Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,25 +1,21 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import pdfplumber, docx, sqlite3,
|
| 3 |
from datetime import datetime
|
| 4 |
import pandas as pd
|
| 5 |
-
from sentence_transformers import SentenceTransformer
|
| 6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 7 |
import torch
|
| 8 |
from duckduckgo_search import DDGS
|
| 9 |
from fpdf import FPDF
|
| 10 |
-
import qrcode
|
| 11 |
-
from PIL import Image
|
| 12 |
|
| 13 |
# -----------------------------
|
| 14 |
# CONFIG
|
| 15 |
# -----------------------------
|
| 16 |
DB_NAME = "db.sqlite3"
|
| 17 |
-
REPORT_DIR = "reports"
|
| 18 |
-
LOGO_PATH = "aixbi.jpg" # Place your uploaded logo in the root
|
| 19 |
USERNAME = "aixbi"
|
| 20 |
PASSWORD = "aixbi@123"
|
| 21 |
-
|
| 22 |
-
|
| 23 |
|
| 24 |
# -----------------------------
|
| 25 |
# DB INIT
|
|
@@ -44,44 +40,52 @@ init_db()
|
|
| 44 |
# MODEL LOADING
|
| 45 |
# -----------------------------
|
| 46 |
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
| 47 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
| 48 |
-
model = AutoModelForSequenceClassification.from_pretrained("
|
| 49 |
|
| 50 |
# -----------------------------
|
| 51 |
-
#
|
| 52 |
# -----------------------------
|
| 53 |
-
def extract_text(
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
return
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
inputs = tokenizer(text[:512], return_tensors="pt", truncation=True)
|
| 67 |
with torch.no_grad():
|
| 68 |
outputs = model(**inputs)
|
| 69 |
score = torch.softmax(outputs.logits, dim=1)[0][1].item()
|
| 70 |
-
return score
|
| 71 |
|
| 72 |
-
def live_plagiarism_check(sentences
|
| 73 |
ddgs = DDGS()
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
samples = random.sample(sentences, min(n_samples, len(sentences)))
|
| 77 |
plagiarism_hits = 0
|
| 78 |
-
|
| 79 |
for sentence in samples:
|
| 80 |
results = list(ddgs.text(sentence, max_results=2))
|
| 81 |
if results:
|
| 82 |
plagiarism_hits += 1
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
| 85 |
|
| 86 |
def save_result(student_id, student_name, ai_score, plagiarism_score):
|
| 87 |
conn = sqlite3.connect(DB_NAME)
|
|
@@ -97,51 +101,54 @@ def load_results():
|
|
| 97 |
conn.close()
|
| 98 |
return df
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
pdf =
|
| 111 |
pdf.add_page()
|
| 112 |
|
| 113 |
-
# Add
|
| 114 |
if os.path.exists(LOGO_PATH):
|
| 115 |
-
pdf.image(LOGO_PATH, 10, 8,
|
| 116 |
|
| 117 |
-
pdf.set_font("Arial",
|
| 118 |
-
pdf.cell(200,
|
| 119 |
pdf.ln(20)
|
| 120 |
|
| 121 |
pdf.set_font("Arial", size=12)
|
| 122 |
-
pdf.
|
| 123 |
-
pdf.
|
| 124 |
-
pdf.
|
| 125 |
-
pdf.
|
| 126 |
-
pdf.cell(200, 10, f"Verdict: {verdict}", ln=True)
|
| 127 |
-
pdf.cell(200, 10, f"Analysis Date: {timestamp}", ln=True)
|
| 128 |
pdf.ln(10)
|
| 129 |
|
| 130 |
-
|
| 131 |
-
if
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
qr_path = "qr_temp.png"
|
| 140 |
-
qr_img.save(qr_path)
|
| 141 |
-
pdf.image(qr_path, x=160, y=230, w=40)
|
| 142 |
|
| 143 |
-
pdf.
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
# -----------------------------
|
| 147 |
# APP LOGIC
|
|
@@ -152,66 +159,80 @@ def login(user, pwd):
|
|
| 152 |
else:
|
| 153 |
return gr.update(), gr.update(), "Invalid username or password!"
|
| 154 |
|
| 155 |
-
def analyze(student_name, student_id,
|
| 156 |
-
if
|
| 157 |
-
return "Please fill all fields and upload a document.", None, None, None
|
| 158 |
-
|
| 159 |
-
text = extract_text(
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
if sentences:
|
| 165 |
-
embeddings = embedder.encode(sentences, convert_to_tensor=True)
|
| 166 |
-
cosine_scores = util.cos_sim(embeddings, embeddings)
|
| 167 |
-
local_score = (cosine_scores > 0.95).float().mean().item() * 100
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
| 171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
save_result(student_id, student_name, ai_score, plagiarism_score)
|
| 173 |
-
pdf_path = generate_pdf_report(student_name, student_id, ai_score, plagiarism_score, top_sentences)
|
| 174 |
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
def show_dashboard():
|
| 178 |
df = load_results()
|
| 179 |
return df
|
| 180 |
|
| 181 |
# -----------------------------
|
| 182 |
-
# GRADIO
|
| 183 |
# -----------------------------
|
| 184 |
-
with gr.Blocks() as demo:
|
| 185 |
-
gr.
|
| 186 |
-
|
|
|
|
|
|
|
| 187 |
|
| 188 |
# Login Section
|
| 189 |
login_box = gr.Group(visible=True)
|
| 190 |
with login_box:
|
| 191 |
user = gr.Textbox(label="Username")
|
| 192 |
pwd = gr.Textbox(label="Password", type="password")
|
| 193 |
-
login_btn = gr.Button("Login")
|
| 194 |
login_msg = gr.Markdown("")
|
| 195 |
|
| 196 |
# Main App
|
| 197 |
app_box = gr.Group(visible=False)
|
| 198 |
with app_box:
|
| 199 |
with gr.Tab("Check Thesis"):
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
|
|
|
| 204 |
status = gr.Textbox(label="Status")
|
| 205 |
ai_score = gr.Number(label="AI Probability (%)")
|
| 206 |
plagiarism_score = gr.Number(label="Plagiarism Score (%)")
|
| 207 |
-
|
| 208 |
-
|
|
|
|
| 209 |
with gr.Tab("Summary Dashboard"):
|
| 210 |
-
dashboard_btn = gr.Button("Refresh Dashboard")
|
| 211 |
dashboard = gr.Dataframe(headers=["id","student_id","student_name","ai_score","plagiarism_score","timestamp"])
|
| 212 |
|
| 213 |
login_btn.click(login, inputs=[user, pwd], outputs=[login_box, app_box, login_msg])
|
| 214 |
-
analyze_btn.click(analyze, inputs=[student_name, student_id, file_upload], outputs=[status, ai_score, plagiarism_score,
|
| 215 |
dashboard_btn.click(show_dashboard, outputs=[dashboard])
|
| 216 |
|
| 217 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import pdfplumber, docx, sqlite3, os, random
|
| 3 |
from datetime import datetime
|
| 4 |
import pandas as pd
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 7 |
import torch
|
| 8 |
from duckduckgo_search import DDGS
|
| 9 |
from fpdf import FPDF
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# -----------------------------
|
| 12 |
# CONFIG
|
| 13 |
# -----------------------------
|
| 14 |
DB_NAME = "db.sqlite3"
|
|
|
|
|
|
|
| 15 |
USERNAME = "aixbi"
|
| 16 |
PASSWORD = "aixbi@123"
|
| 17 |
+
MAX_SENTENCES_CHECK = 10
|
| 18 |
+
LOGO_PATH = "aixbi.jpg" # Place your logo here
|
| 19 |
|
| 20 |
# -----------------------------
|
| 21 |
# DB INIT
|
|
|
|
| 40 |
# MODEL LOADING
|
| 41 |
# -----------------------------
|
| 42 |
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
| 43 |
+
tokenizer = AutoTokenizer.from_pretrained("SuperAnnotate/ai-detector")
|
| 44 |
+
model = AutoModelForSequenceClassification.from_pretrained("SuperAnnotate/ai-detector")
|
| 45 |
|
| 46 |
# -----------------------------
|
| 47 |
+
# SAFE TEXT EXTRACTION
|
| 48 |
# -----------------------------
|
| 49 |
+
def extract_text(file_obj):
|
| 50 |
+
try:
|
| 51 |
+
name = file_obj.name
|
| 52 |
+
if name.endswith(".pdf"):
|
| 53 |
+
with pdfplumber.open(file_obj.name) as pdf:
|
| 54 |
+
text = " ".join(page.extract_text() or "" for page in pdf.pages)
|
| 55 |
+
return text.strip() if text else None
|
| 56 |
+
elif name.endswith(".docx"):
|
| 57 |
+
doc = docx.Document(file_obj.name)
|
| 58 |
+
text = " ".join([p.text for p in doc.paragraphs])
|
| 59 |
+
return text.strip() if text else None
|
| 60 |
+
elif name.endswith(".txt"):
|
| 61 |
+
text = file_obj.read().decode("utf-8", errors="ignore")
|
| 62 |
+
return text.strip() if text else None
|
| 63 |
+
else:
|
| 64 |
+
return None
|
| 65 |
+
except Exception:
|
| 66 |
+
return None
|
| 67 |
+
|
| 68 |
+
def detect_ai_text(text):
|
| 69 |
inputs = tokenizer(text[:512], return_tensors="pt", truncation=True)
|
| 70 |
with torch.no_grad():
|
| 71 |
outputs = model(**inputs)
|
| 72 |
score = torch.softmax(outputs.logits, dim=1)[0][1].item()
|
| 73 |
+
return score # probability of AI-generated
|
| 74 |
|
| 75 |
+
def live_plagiarism_check(sentences):
|
| 76 |
ddgs = DDGS()
|
| 77 |
+
samples = random.sample(sentences, min(MAX_SENTENCES_CHECK, len(sentences)))
|
| 78 |
+
suspicious_sentences = []
|
|
|
|
| 79 |
plagiarism_hits = 0
|
| 80 |
+
|
| 81 |
for sentence in samples:
|
| 82 |
results = list(ddgs.text(sentence, max_results=2))
|
| 83 |
if results:
|
| 84 |
plagiarism_hits += 1
|
| 85 |
+
suspicious_sentences.append(sentence)
|
| 86 |
+
|
| 87 |
+
score = (plagiarism_hits / len(samples)) * 100 if samples else 0
|
| 88 |
+
return score, suspicious_sentences
|
| 89 |
|
| 90 |
def save_result(student_id, student_name, ai_score, plagiarism_score):
|
| 91 |
conn = sqlite3.connect(DB_NAME)
|
|
|
|
| 101 |
conn.close()
|
| 102 |
return df
|
| 103 |
|
| 104 |
+
# -----------------------------
|
| 105 |
+
# PDF REPORT WITH LOGO & COLORS
|
| 106 |
+
# -----------------------------
|
| 107 |
+
class HighlightPDF(FPDF):
|
| 108 |
+
def add_highlighted_sentence(self, sentence, color):
|
| 109 |
+
self.set_fill_color(*color)
|
| 110 |
+
self.multi_cell(0, 10, sentence, fill=True)
|
| 111 |
+
self.ln(1)
|
| 112 |
+
|
| 113 |
+
def generate_pdf_report(student_name, student_id, ai_score, plagiarism_score, suspicious_sentences, sample_text, output_path):
|
| 114 |
+
pdf = HighlightPDF()
|
| 115 |
pdf.add_page()
|
| 116 |
|
| 117 |
+
# Add logo
|
| 118 |
if os.path.exists(LOGO_PATH):
|
| 119 |
+
pdf.image(LOGO_PATH, 10, 8, 20, 20)
|
| 120 |
|
| 121 |
+
pdf.set_font("Arial", style='B', size=14)
|
| 122 |
+
pdf.cell(200, 10, txt="AIxBI - Ultimate Document Plagiarism Report", ln=True, align='C')
|
| 123 |
pdf.ln(20)
|
| 124 |
|
| 125 |
pdf.set_font("Arial", size=12)
|
| 126 |
+
pdf.multi_cell(0, 10, txt=f"Student: {student_name} ({student_id})")
|
| 127 |
+
pdf.multi_cell(0, 10, txt=f"AI Probability: {ai_score:.2f}%")
|
| 128 |
+
pdf.multi_cell(0, 10, txt=f"Plagiarism Score: {plagiarism_score:.2f}%")
|
| 129 |
+
pdf.multi_cell(0, 10, txt=f"Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
|
|
|
|
|
|
| 130 |
pdf.ln(10)
|
| 131 |
|
| 132 |
+
pdf.multi_cell(0, 10, txt="Suspicious Sentences Detected:")
|
| 133 |
+
if suspicious_sentences:
|
| 134 |
+
for s in suspicious_sentences:
|
| 135 |
+
pdf.add_highlighted_sentence(f"- {s}", (255, 200, 200)) # Red for suspicious
|
| 136 |
+
else:
|
| 137 |
+
pdf.multi_cell(0, 10, "None detected.")
|
| 138 |
+
pdf.ln(10)
|
| 139 |
|
| 140 |
+
pdf.multi_cell(0, 10, txt="Sample Detected Text (AI/Plagiarized Excerpt):")
|
| 141 |
+
pdf.add_highlighted_sentence(sample_text, (255, 230, 200)) # Orange
|
| 142 |
+
pdf.ln(10)
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
pdf.multi_cell(0, 10, txt="Recommendations for Student:")
|
| 145 |
+
recommendations = """1. Rewrite detected sentences in your own words.
|
| 146 |
+
2. Add citations for any copied or referenced material.
|
| 147 |
+
3. Avoid using AI content directly—use as guidance, not verbatim.
|
| 148 |
+
4. Use plagiarism tools and proofread before submission."""
|
| 149 |
+
pdf.multi_cell(0, 10, recommendations)
|
| 150 |
+
|
| 151 |
+
pdf.output(output_path)
|
| 152 |
|
| 153 |
# -----------------------------
|
| 154 |
# APP LOGIC
|
|
|
|
| 159 |
else:
|
| 160 |
return gr.update(), gr.update(), "Invalid username or password!"
|
| 161 |
|
| 162 |
+
def analyze(student_name, student_id, file_obj):
|
| 163 |
+
if file_obj is None or not student_name or not student_id:
|
| 164 |
+
return "Please fill all fields and upload a document.", None, None, None, None
|
| 165 |
+
|
| 166 |
+
text = extract_text(file_obj)
|
| 167 |
+
if not text:
|
| 168 |
+
return "Error: Could not read the file. Please upload a valid PDF, DOCX, or TXT.", None, None, None, None
|
| 169 |
+
|
| 170 |
+
sentences = [s.strip() for s in text.split(". ") if len(s) > 30]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
+
# AI Detection
|
| 173 |
+
ai_score = detect_ai_text(text) * 100
|
| 174 |
|
| 175 |
+
# Live plagiarism
|
| 176 |
+
plagiarism_score, suspicious_sentences = live_plagiarism_check(sentences)
|
| 177 |
+
|
| 178 |
+
# Pick a sample suspicious excerpt for report
|
| 179 |
+
sample_text = suspicious_sentences[0] if suspicious_sentences else text[:200]
|
| 180 |
+
|
| 181 |
+
# Save to DB
|
| 182 |
save_result(student_id, student_name, ai_score, plagiarism_score)
|
|
|
|
| 183 |
|
| 184 |
+
# Generate PDF Report
|
| 185 |
+
output_pdf = f"{student_id}_report.pdf"
|
| 186 |
+
generate_pdf_report(
|
| 187 |
+
student_name, student_id, ai_score, plagiarism_score,
|
| 188 |
+
suspicious_sentences, sample_text, output_pdf
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
highlighted_text = "\n\n".join([f"⚠️ {s}" for s in suspicious_sentences]) if suspicious_sentences else "No suspicious sentences found."
|
| 192 |
+
return f"Analysis Completed for {student_name} ({student_id})", round(ai_score,2), round(plagiarism_score,2), output_pdf, highlighted_text
|
| 193 |
|
| 194 |
def show_dashboard():
|
| 195 |
df = load_results()
|
| 196 |
return df
|
| 197 |
|
| 198 |
# -----------------------------
|
| 199 |
+
# GRADIO UI (LIGHT THEME & LOGO)
|
| 200 |
# -----------------------------
|
| 201 |
+
with gr.Blocks(theme="default") as demo:
|
| 202 |
+
with gr.Row():
|
| 203 |
+
if os.path.exists(LOGO_PATH):
|
| 204 |
+
gr.Image(LOGO_PATH, elem_id="logo", show_label=False, scale=0.2)
|
| 205 |
+
gr.Markdown("## **AIxBI - Ultimate Document Plagiarism Software**\n#### Professional Thesis & AI Content Detector", elem_id="title")
|
| 206 |
|
| 207 |
# Login Section
|
| 208 |
login_box = gr.Group(visible=True)
|
| 209 |
with login_box:
|
| 210 |
user = gr.Textbox(label="Username")
|
| 211 |
pwd = gr.Textbox(label="Password", type="password")
|
| 212 |
+
login_btn = gr.Button("Login", variant="primary")
|
| 213 |
login_msg = gr.Markdown("")
|
| 214 |
|
| 215 |
# Main App
|
| 216 |
app_box = gr.Group(visible=False)
|
| 217 |
with app_box:
|
| 218 |
with gr.Tab("Check Thesis"):
|
| 219 |
+
with gr.Row():
|
| 220 |
+
student_name = gr.Textbox(label="Student Name")
|
| 221 |
+
student_id = gr.Textbox(label="Student ID")
|
| 222 |
+
file_upload = gr.File(label="Upload Document", file_types=[".pdf",".docx",".txt"])
|
| 223 |
+
analyze_btn = gr.Button("Analyze Document", variant="primary")
|
| 224 |
status = gr.Textbox(label="Status")
|
| 225 |
ai_score = gr.Number(label="AI Probability (%)")
|
| 226 |
plagiarism_score = gr.Number(label="Plagiarism Score (%)")
|
| 227 |
+
suspicious_text = gr.Textbox(label="Suspicious Sentences Highlight", lines=10)
|
| 228 |
+
pdf_output = gr.File(label="Download PDF Report")
|
| 229 |
+
|
| 230 |
with gr.Tab("Summary Dashboard"):
|
| 231 |
+
dashboard_btn = gr.Button("Refresh Dashboard", variant="secondary")
|
| 232 |
dashboard = gr.Dataframe(headers=["id","student_id","student_name","ai_score","plagiarism_score","timestamp"])
|
| 233 |
|
| 234 |
login_btn.click(login, inputs=[user, pwd], outputs=[login_box, app_box, login_msg])
|
| 235 |
+
analyze_btn.click(analyze, inputs=[student_name, student_id, file_upload], outputs=[status, ai_score, plagiarism_score, pdf_output, suspicious_text])
|
| 236 |
dashboard_btn.click(show_dashboard, outputs=[dashboard])
|
| 237 |
|
| 238 |
if __name__ == "__main__":
|