Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pdfplumber, docx, sqlite3, os, random
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from sentence_transformers import SentenceTransformer, util
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 7 |
+
import torch
|
| 8 |
+
from duckduckgo_search import DDGS
|
| 9 |
+
|
| 10 |
+
# -----------------------------
|
| 11 |
+
# CONFIG
|
| 12 |
+
# -----------------------------
|
| 13 |
+
DB_NAME = "db.sqlite3"
|
| 14 |
+
USERNAME = "aixbi"
|
| 15 |
+
PASSWORD = "aixbi@123"
|
| 16 |
+
|
| 17 |
+
# -----------------------------
|
| 18 |
+
# DB INIT
|
| 19 |
+
# -----------------------------
|
| 20 |
+
def init_db():
|
| 21 |
+
conn = sqlite3.connect(DB_NAME)
|
| 22 |
+
c = conn.cursor()
|
| 23 |
+
c.execute("""CREATE TABLE IF NOT EXISTS results (
|
| 24 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 25 |
+
student_id TEXT,
|
| 26 |
+
student_name TEXT,
|
| 27 |
+
ai_score REAL,
|
| 28 |
+
plagiarism_score REAL,
|
| 29 |
+
timestamp TEXT
|
| 30 |
+
)""")
|
| 31 |
+
conn.commit()
|
| 32 |
+
conn.close()
|
| 33 |
+
|
| 34 |
+
init_db()
|
| 35 |
+
|
| 36 |
+
# -----------------------------
|
| 37 |
+
# MODEL LOADING (only once)
|
| 38 |
+
# -----------------------------
|
| 39 |
+
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained("hello-simpleai/chatgpt-detector-roberta")
|
| 41 |
+
model = AutoModelForSequenceClassification.from_pretrained("hello-simpleai/chatgpt-detector-roberta")
|
| 42 |
+
|
| 43 |
+
# -----------------------------
|
| 44 |
+
# FUNCTIONS
|
| 45 |
+
# -----------------------------
|
| 46 |
+
def extract_text(file_obj):
|
| 47 |
+
name = file_obj.name
|
| 48 |
+
if name.endswith(".pdf"):
|
| 49 |
+
with pdfplumber.open(file_obj.name) as pdf:
|
| 50 |
+
return " ".join(page.extract_text() for page in pdf.pages if page.extract_text())
|
| 51 |
+
elif name.endswith(".docx"):
|
| 52 |
+
doc = docx.Document(file_obj.name)
|
| 53 |
+
return " ".join([p.text for p in doc.paragraphs])
|
| 54 |
+
else:
|
| 55 |
+
return file_obj.read().decode("utf-8")
|
| 56 |
+
|
| 57 |
+
def detect_ai_text(text):
|
| 58 |
+
inputs = tokenizer(text[:512], return_tensors="pt", truncation=True)
|
| 59 |
+
with torch.no_grad():
|
| 60 |
+
outputs = model(**inputs)
|
| 61 |
+
score = torch.softmax(outputs.logits, dim=1)[0][1].item()
|
| 62 |
+
return score # probability of AI-generated
|
| 63 |
+
|
| 64 |
+
def live_plagiarism_check(sentences, n_samples=3):
|
| 65 |
+
ddgs = DDGS()
|
| 66 |
+
samples = random.sample(sentences, min(n_samples, len(sentences)))
|
| 67 |
+
plagiarism_hits = 0
|
| 68 |
+
for sentence in samples:
|
| 69 |
+
results = list(ddgs.text(sentence, max_results=2))
|
| 70 |
+
if results:
|
| 71 |
+
plagiarism_hits += 1
|
| 72 |
+
return (plagiarism_hits / len(samples)) * 100
|
| 73 |
+
|
| 74 |
+
def save_result(student_id, student_name, ai_score, plagiarism_score):
|
| 75 |
+
conn = sqlite3.connect(DB_NAME)
|
| 76 |
+
c = conn.cursor()
|
| 77 |
+
c.execute("INSERT INTO results (student_id, student_name, ai_score, plagiarism_score, timestamp) VALUES (?,?,?,?,?)",
|
| 78 |
+
(student_id, student_name, ai_score, plagiarism_score, datetime.now().strftime("%Y-%m-%d %H:%M:%S")))
|
| 79 |
+
conn.commit()
|
| 80 |
+
conn.close()
|
| 81 |
+
|
| 82 |
+
def load_results():
|
| 83 |
+
conn = sqlite3.connect(DB_NAME)
|
| 84 |
+
df = pd.read_sql_query("SELECT * FROM results", conn)
|
| 85 |
+
conn.close()
|
| 86 |
+
return df
|
| 87 |
+
|
| 88 |
+
# -----------------------------
|
| 89 |
+
# APP LOGIC
|
| 90 |
+
# -----------------------------
|
| 91 |
+
def login(user, pwd):
|
| 92 |
+
if user == USERNAME and pwd == PASSWORD:
|
| 93 |
+
return gr.update(visible=False), gr.update(visible=True), ""
|
| 94 |
+
else:
|
| 95 |
+
return gr.update(), gr.update(), "Invalid username or password!"
|
| 96 |
+
|
| 97 |
+
def analyze(student_name, student_id, file_obj):
|
| 98 |
+
if file_obj is None or not student_name or not student_id:
|
| 99 |
+
return "Please fill all fields and upload a document.", None, None
|
| 100 |
+
|
| 101 |
+
text = extract_text(file_obj)
|
| 102 |
+
sentences = [s for s in text.split(". ") if len(s) > 20]
|
| 103 |
+
|
| 104 |
+
# AI Detection
|
| 105 |
+
ai_score = detect_ai_text(text) * 100
|
| 106 |
+
|
| 107 |
+
# Local similarity
|
| 108 |
+
embeddings = embedder.encode(sentences, convert_to_tensor=True)
|
| 109 |
+
cosine_scores = util.cos_sim(embeddings, embeddings)
|
| 110 |
+
local_score = (cosine_scores > 0.95).float().mean().item() * 100
|
| 111 |
+
|
| 112 |
+
# Live web check
|
| 113 |
+
live_score = live_plagiarism_check(sentences)
|
| 114 |
+
plagiarism_score = max(local_score, live_score)
|
| 115 |
+
|
| 116 |
+
# Save to DB
|
| 117 |
+
save_result(student_id, student_name, ai_score, plagiarism_score)
|
| 118 |
+
|
| 119 |
+
return f"Analysis Completed for {student_name} ({student_id})", round(ai_score,2), round(plagiarism_score,2)
|
| 120 |
+
|
| 121 |
+
def show_dashboard():
|
| 122 |
+
df = load_results()
|
| 123 |
+
return df
|
| 124 |
+
|
| 125 |
+
with gr.Blocks() as demo:
|
| 126 |
+
gr.Markdown("# AIxBI - Plagiarism & AI Detection")
|
| 127 |
+
|
| 128 |
+
# Login Section
|
| 129 |
+
login_box = gr.Group(visible=True)
|
| 130 |
+
with login_box:
|
| 131 |
+
user = gr.Textbox(label="Username")
|
| 132 |
+
pwd = gr.Textbox(label="Password", type="password")
|
| 133 |
+
login_btn = gr.Button("Login")
|
| 134 |
+
login_msg = gr.Markdown("")
|
| 135 |
+
|
| 136 |
+
# Main App
|
| 137 |
+
app_box = gr.Group(visible=False)
|
| 138 |
+
with app_box:
|
| 139 |
+
with gr.Tab("Check Thesis"):
|
| 140 |
+
student_name = gr.Textbox(label="Student Name")
|
| 141 |
+
student_id = gr.Textbox(label="Student ID")
|
| 142 |
+
file_upload = gr.File(label="Upload Document", file_types=[".pdf",".docx",".txt"])
|
| 143 |
+
analyze_btn = gr.Button("Analyze Document")
|
| 144 |
+
status = gr.Textbox(label="Status")
|
| 145 |
+
ai_score = gr.Number(label="AI Probability (%)")
|
| 146 |
+
plagiarism_score = gr.Number(label="Plagiarism Score (%)")
|
| 147 |
+
|
| 148 |
+
with gr.Tab("Summary Dashboard"):
|
| 149 |
+
dashboard_btn = gr.Button("Refresh Dashboard")
|
| 150 |
+
dashboard = gr.Dataframe(headers=["id","student_id","student_name","ai_score","plagiarism_score","timestamp"])
|
| 151 |
+
|
| 152 |
+
login_btn.click(login, inputs=[user, pwd], outputs=[login_box, app_box, login_msg])
|
| 153 |
+
analyze_btn.click(analyze, inputs=[student_name, student_id, file_upload], outputs=[status, ai_score, plagiarism_score])
|
| 154 |
+
dashboard_btn.click(show_dashboard, outputs=[dashboard])
|
| 155 |
+
|
| 156 |
+
if __name__ == "__main__":
|
| 157 |
+
demo.launch()
|