Spaces:
Runtime error
Runtime error
| import re | |
| import json | |
| import os | |
| import glob | |
| import time | |
| import logging | |
| from datetime import datetime | |
| import torch | |
| from PIL import Image | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from tqdm import tqdm | |
| # Configure model settings | |
| MODEL_NAME = "StanfordAIMI/CheXagent-2-3b" | |
| DTYPE = torch.bfloat16 | |
| DEVICE = "cuda" | |
| # Configure logging | |
| log_filename = f"model_inference_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json" | |
| logging.basicConfig(filename=log_filename, level=logging.INFO, format="%(message)s") | |
| def initialize_model() -> tuple[AutoModelForCausalLM, AutoTokenizer]: | |
| """Initialize the CheXagent model and tokenizer. | |
| Returns: | |
| tuple containing: | |
| - AutoModelForCausalLM: The initialized CheXagent model | |
| - AutoTokenizer: The initialized tokenizer | |
| """ | |
| print("Loading model and tokenizer...") | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, device_map="auto", trust_remote_code=True | |
| ) | |
| model = model.to(DTYPE) | |
| model.eval() | |
| return model, tokenizer | |
| def create_inference_request( | |
| question_data: dict, | |
| case_details: dict, | |
| case_id: str, | |
| question_id: str, | |
| model: AutoModelForCausalLM, | |
| tokenizer: AutoTokenizer, | |
| ) -> str | None: | |
| """Create and execute an inference request for the CheXagent model. | |
| Args: | |
| question_data: Dictionary containing question details and metadata | |
| case_details: Dictionary containing case information and image paths | |
| case_id: Unique identifier for the medical case | |
| question_id: Unique identifier for the question | |
| model: The initialized CheXagent model | |
| tokenizer: The initialized tokenizer | |
| Returns: | |
| str | None: Single letter answer (A-F) if successful, None if failed | |
| """ | |
| system_prompt = """You are a medical imaging expert. Your task is to provide ONLY a single letter answer. | |
| Rules: | |
| 1. Respond with exactly one uppercase letter (A/B/C/D/E/F) | |
| 2. Do not add periods, explanations, or any other text | |
| 3. Do not use markdown or formatting | |
| 4. Do not restate the question | |
| 5. Do not explain your reasoning | |
| Examples of valid responses: | |
| A | |
| B | |
| C | |
| Examples of invalid responses: | |
| "A." | |
| "Answer: B" | |
| "C) This shows..." | |
| "The answer is D" | |
| """ | |
| prompt = f"""Given the following medical case: | |
| Please answer this multiple choice question: | |
| {question_data['question']} | |
| Base your answer only on the provided images and case information.""" | |
| # Parse required figures | |
| try: | |
| if isinstance(question_data["figures"], str): | |
| try: | |
| required_figures = json.loads(question_data["figures"]) | |
| except json.JSONDecodeError: | |
| required_figures = [question_data["figures"]] | |
| elif isinstance(question_data["figures"], list): | |
| required_figures = question_data["figures"] | |
| else: | |
| required_figures = [str(question_data["figures"])] | |
| except Exception as e: | |
| print(f"Error parsing figures: {e}") | |
| required_figures = [] | |
| required_figures = [ | |
| fig if fig.startswith("Figure ") else f"Figure {fig}" for fig in required_figures | |
| ] | |
| # Get image paths | |
| image_paths = [] | |
| for figure in required_figures: | |
| base_figure_num = "".join(filter(str.isdigit, figure)) | |
| figure_letter = "".join(filter(str.isalpha, figure.split()[-1])) or None | |
| matching_figures = [ | |
| case_figure | |
| for case_figure in case_details.get("figures", []) | |
| if case_figure["number"] == f"Figure {base_figure_num}" | |
| ] | |
| for case_figure in matching_figures: | |
| subfigures = [] | |
| if figure_letter: | |
| subfigures = [ | |
| subfig | |
| for subfig in case_figure.get("subfigures", []) | |
| if subfig.get("number", "").lower().endswith(figure_letter.lower()) | |
| or subfig.get("label", "").lower() == figure_letter.lower() | |
| ] | |
| else: | |
| subfigures = case_figure.get("subfigures", []) | |
| for subfig in subfigures: | |
| if "local_path" in subfig: | |
| image_paths.append("medrax/data/" + subfig["local_path"]) | |
| if not image_paths: | |
| print(f"No local images found for case {case_id}, question {question_id}") | |
| return None | |
| try: | |
| start_time = time.time() | |
| # Prepare input for the model | |
| query = tokenizer.from_list_format( | |
| [*[{"image": path} for path in image_paths], {"text": prompt}] | |
| ) | |
| conv = [{"from": "system", "value": system_prompt}, {"from": "human", "value": query}] | |
| input_ids = tokenizer.apply_chat_template( | |
| conv, add_generation_prompt=True, return_tensors="pt" | |
| ) | |
| # Generate response | |
| with torch.no_grad(): | |
| output = model.generate( | |
| input_ids.to(DEVICE), | |
| do_sample=False, | |
| num_beams=1, | |
| temperature=1.0, | |
| top_p=1.0, | |
| use_cache=True, | |
| max_new_tokens=512, | |
| )[0] | |
| response = tokenizer.decode(output[input_ids.size(1) : -1]) | |
| duration = time.time() - start_time | |
| # Clean response | |
| clean_answer = validate_answer(response) | |
| # Log response | |
| log_entry = { | |
| "case_id": case_id, | |
| "question_id": question_id, | |
| "timestamp": datetime.now().isoformat(), | |
| "model": MODEL_NAME, | |
| "duration": round(duration, 2), | |
| "model_answer": clean_answer, | |
| "correct_answer": question_data["answer"], | |
| "input": { | |
| "question_data": { | |
| "question": question_data["question"], | |
| "explanation": question_data["explanation"], | |
| "metadata": question_data.get("metadata", {}), | |
| "figures": question_data["figures"], | |
| }, | |
| "image_paths": image_paths, | |
| }, | |
| } | |
| logging.info(json.dumps(log_entry)) | |
| return clean_answer | |
| except Exception as e: | |
| print(f"Error processing case {case_id}, question {question_id}: {str(e)}") | |
| log_entry = { | |
| "case_id": case_id, | |
| "question_id": question_id, | |
| "timestamp": datetime.now().isoformat(), | |
| "model": MODEL_NAME, | |
| "status": "error", | |
| "error": str(e), | |
| "input": { | |
| "question_data": { | |
| "question": question_data["question"], | |
| "explanation": question_data["explanation"], | |
| "metadata": question_data.get("metadata", {}), | |
| "figures": question_data["figures"], | |
| }, | |
| "image_paths": image_paths, | |
| }, | |
| } | |
| logging.info(json.dumps(log_entry)) | |
| return None | |
| def validate_answer(response_text: str) -> str | None: | |
| """Enforce strict single-letter response format. | |
| Args: | |
| response_text: Raw response text from the model | |
| Returns: | |
| str | None: Single uppercase letter (A-F) if valid, None if invalid | |
| """ | |
| if not response_text: | |
| return None | |
| # Remove all whitespace and convert to uppercase | |
| cleaned = response_text.strip().upper() | |
| # Check if it's exactly one valid letter | |
| if len(cleaned) == 1 and cleaned in "ABCDEF": | |
| return cleaned | |
| # If not, try to extract just the letter | |
| match = re.search(r"([A-F])", cleaned) | |
| return match.group(1) if match else None | |
| def load_benchmark_questions(case_id: str) -> list[str]: | |
| """Find all question files for a given case ID. | |
| Args: | |
| case_id: Unique identifier for the medical case | |
| Returns: | |
| list[str]: List of paths to question JSON files | |
| """ | |
| benchmark_dir = "../benchmark/questions" | |
| return glob.glob(f"{benchmark_dir}/{case_id}/{case_id}_*.json") | |
| def count_total_questions() -> tuple[int, int]: | |
| """Count total number of cases and questions in benchmark. | |
| Returns: | |
| tuple containing: | |
| - int: Total number of cases | |
| - int: Total number of questions | |
| """ | |
| total_cases = len(glob.glob("../benchmark/questions/*")) | |
| total_questions = sum( | |
| len(glob.glob(f"../benchmark/questions/{case_id}/*.json")) | |
| for case_id in os.listdir("../benchmark/questions") | |
| ) | |
| return total_cases, total_questions | |
| def main(): | |
| # Load the cases with local paths | |
| with open("medrax/data/updated_cases.json", "r") as file: | |
| data = json.load(file) | |
| # Initialize model and tokenizer | |
| model, tokenizer = initialize_model() | |
| total_cases, total_questions = count_total_questions() | |
| cases_processed = 0 | |
| questions_processed = 0 | |
| skipped_questions = 0 | |
| print(f"\nBeginning inference with {MODEL_NAME}") | |
| print(f"Found {total_cases} cases with {total_questions} total questions") | |
| # Process each case with progress bar | |
| for case_id, case_details in tqdm(data.items(), desc="Processing cases"): | |
| question_files = load_benchmark_questions(case_id) | |
| if not question_files: | |
| continue | |
| cases_processed += 1 | |
| for question_file in tqdm( | |
| question_files, desc=f"Processing questions for case {case_id}", leave=False | |
| ): | |
| with open(question_file, "r") as file: | |
| question_data = json.load(file) | |
| question_id = os.path.basename(question_file).split(".")[0] | |
| questions_processed += 1 | |
| answer = create_inference_request( | |
| question_data, case_details, case_id, question_id, model, tokenizer | |
| ) | |
| if answer is None: | |
| skipped_questions += 1 | |
| continue | |
| print(f"\nCase {case_id}, Question {question_id}") | |
| print(f"Model Answer: {answer}") | |
| print(f"Correct Answer: {question_data['answer']}") | |
| print(f"\nInference Summary:") | |
| print(f"Total Cases Processed: {cases_processed}") | |
| print(f"Total Questions Processed: {questions_processed}") | |
| print(f"Total Questions Skipped: {skipped_questions}") | |
| if __name__ == "__main__": | |
| main() | |