Spaces:
Runtime error
Runtime error
| from typing import Dict, List, Optional, Any, Union | |
| import re | |
| import json | |
| import os | |
| import glob | |
| import time | |
| import logging | |
| import socket | |
| import requests | |
| import httpx | |
| import backoff | |
| from datetime import datetime | |
| from tenacity import retry, wait_exponential, stop_after_attempt | |
| from openai import OpenAI | |
| # Configure model settings | |
| MODEL_NAME = "meta-llama/llama-3.2-90b-vision-instruct" | |
| temperature = 0.2 | |
| # Configure logging | |
| log_filename = f"api_usage_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json" | |
| logging.basicConfig(filename=log_filename, level=logging.INFO, format="%(message)s") | |
| def verify_dns() -> bool: | |
| """Verify DNS resolution and connectivity. | |
| Returns: | |
| bool: True if DNS resolution succeeds, False otherwise | |
| """ | |
| try: | |
| # Try to resolve openrouter.ai | |
| socket.gethostbyname("openrouter.ai") | |
| return True | |
| except socket.gaierror: | |
| print("DNS resolution failed. Trying to use Google DNS (8.8.8.8)...") | |
| # Modify resolv.conf to use Google DNS | |
| try: | |
| with open("/etc/resolv.conf", "w") as f: | |
| f.write("nameserver 8.8.8.8\n") | |
| return True | |
| except Exception as e: | |
| print(f"Failed to update DNS settings: {e}") | |
| return False | |
| def verify_connection() -> bool: | |
| """Verify connection to OpenRouter API. | |
| Returns: | |
| bool: True if connection succeeds, False otherwise | |
| """ | |
| try: | |
| response = requests.get("https://openrouter.ai/api/v1/status", timeout=10) | |
| return response.status_code == 200 | |
| except Exception as e: | |
| print(f"Connection test failed: {e}") | |
| return False | |
| def initialize_client() -> OpenAI: | |
| """Initialize the OpenRouter client with proper timeout settings and connection verification. | |
| Returns: | |
| OpenAI: Configured OpenAI client for OpenRouter | |
| Raises: | |
| ValueError: If OPENROUTER_API_KEY environment variable is not set | |
| ConnectionError: If DNS verification or connection test fails | |
| """ | |
| api_key = os.getenv("OPENROUTER_API_KEY") | |
| if not api_key: | |
| raise ValueError("OPENROUTER_API_KEY environment variable is not set.") | |
| # Configure timeout settings for the client | |
| timeout_settings = 120 # Increased timeout for large images/responses | |
| # Verify DNS and connection | |
| if not verify_dns(): | |
| raise ConnectionError("DNS verification failed. Please check your network settings.") | |
| if not verify_connection(): | |
| raise ConnectionError( | |
| "Cannot connect to OpenRouter. Please check your internet connection." | |
| ) | |
| # Set up client with retry and timeout settings | |
| return OpenAI( | |
| base_url="https://openrouter.ai/api/v1", | |
| api_key=api_key, | |
| timeout=timeout_settings, | |
| http_client=httpx.Client( | |
| timeout=timeout_settings, transport=httpx.HTTPTransport(retries=3) | |
| ), | |
| ) | |
| def create_multimodal_request( | |
| question_data: Dict[str, Any], | |
| case_details: Dict[str, Any], | |
| case_id: str, | |
| question_id: str, | |
| client: OpenAI, | |
| ) -> Optional[Any]: | |
| """Create and send a multimodal request to the model. | |
| Args: | |
| question_data: Dictionary containing question details | |
| case_details: Dictionary containing case information | |
| case_id: ID of the medical case | |
| question_id: ID of the specific question | |
| client: OpenAI client instance | |
| Returns: | |
| Optional[Any]: Model response if successful, None if skipped | |
| Raises: | |
| ConnectionError: If connection fails | |
| TimeoutError: If request times out | |
| Exception: For other errors | |
| """ | |
| system_prompt = """You are a medical imaging expert. Your task is to provide ONLY a single letter answer. | |
| Rules: | |
| 1. Respond with exactly one uppercase letter (A/B/C/D/E/F) | |
| 2. Do not add periods, explanations, or any other text | |
| 3. Do not use markdown or formatting | |
| 4. Do not restate the question | |
| 5. Do not explain your reasoning | |
| Examples of valid responses: | |
| A | |
| B | |
| C | |
| Examples of invalid responses: | |
| "A." | |
| "Answer: B" | |
| "C) This shows..." | |
| "The answer is D" | |
| """ | |
| prompt = f"""Given the following medical case: | |
| Please answer this multiple choice question: | |
| {question_data['question']} | |
| Base your answer only on the provided images and case information.""" | |
| # Parse required figures | |
| try: | |
| if isinstance(question_data["figures"], str): | |
| try: | |
| required_figures = json.loads(question_data["figures"]) | |
| except json.JSONDecodeError: | |
| required_figures = [question_data["figures"]] | |
| elif isinstance(question_data["figures"], list): | |
| required_figures = question_data["figures"] | |
| else: | |
| required_figures = [str(question_data["figures"])] | |
| except Exception as e: | |
| print(f"Error parsing figures: {e}") | |
| required_figures = [] | |
| required_figures = [ | |
| fig if fig.startswith("Figure ") else f"Figure {fig}" for fig in required_figures | |
| ] | |
| # Process subfigures and prepare content | |
| content = [{"type": "text", "text": prompt}] | |
| image_urls = [] | |
| image_captions = [] | |
| for figure in required_figures: | |
| base_figure_num = "".join(filter(str.isdigit, figure)) | |
| figure_letter = "".join(filter(str.isalpha, figure.split()[-1])) or None | |
| matching_figures = [ | |
| case_figure | |
| for case_figure in case_details.get("figures", []) | |
| if case_figure["number"] == f"Figure {base_figure_num}" | |
| ] | |
| for case_figure in matching_figures: | |
| subfigures = [] | |
| if figure_letter: | |
| subfigures = [ | |
| subfig | |
| for subfig in case_figure.get("subfigures", []) | |
| if subfig.get("number", "").lower().endswith(figure_letter.lower()) | |
| or subfig.get("label", "").lower() == figure_letter.lower() | |
| ] | |
| else: | |
| subfigures = case_figure.get("subfigures", []) | |
| for subfig in subfigures: | |
| if "url" in subfig: | |
| content.append({"type": "image_url", "image_url": {"url": subfig["url"]}}) | |
| image_urls.append(subfig["url"]) | |
| image_captions.append(subfig.get("caption", "")) | |
| if len(content) == 1: # Only the text prompt exists | |
| print(f"No images found for case {case_id}, question {question_id}") | |
| # Log the skipped question | |
| log_entry = { | |
| "case_id": case_id, | |
| "question_id": question_id, | |
| "timestamp": datetime.now().isoformat(), | |
| "model": MODEL_NAME, | |
| "status": "skipped", | |
| "reason": "no_images", | |
| "input": { | |
| "question_data": { | |
| "question": question_data["question"], | |
| "explanation": question_data["explanation"], | |
| "metadata": question_data.get("metadata", {}), | |
| "figures": question_data["figures"], | |
| }, | |
| "image_urls": image_urls, | |
| }, | |
| } | |
| logging.info(json.dumps(log_entry)) | |
| return None | |
| try: | |
| start_time = time.time() | |
| response = client.chat.completions.create( | |
| model=MODEL_NAME, | |
| temperature=temperature, | |
| messages=[ | |
| {"role": "system", "content": system_prompt}, | |
| {"role": "user", "content": content}, | |
| ], | |
| ) | |
| duration = time.time() - start_time | |
| # Get raw response | |
| raw_answer = response.choices[0].message.content | |
| # Validate and clean | |
| clean_answer = validate_answer(raw_answer) | |
| if not clean_answer: | |
| print(f"Warning: Invalid response format for case {case_id}, question {question_id}") | |
| print(f"Raw response: {raw_answer}") | |
| # Update response object with cleaned answer | |
| response.choices[0].message.content = clean_answer | |
| # Log response | |
| log_entry = { | |
| "case_id": case_id, | |
| "question_id": question_id, | |
| "timestamp": datetime.now().isoformat(), | |
| "model": MODEL_NAME, | |
| "temperature": temperature, | |
| "duration": round(duration, 2), | |
| "usage": { | |
| "prompt_tokens": response.usage.prompt_tokens, | |
| "completion_tokens": response.usage.completion_tokens, | |
| "total_tokens": response.usage.total_tokens, | |
| }, | |
| "model_answer": response.choices[0].message.content, | |
| "correct_answer": question_data["answer"], | |
| "input": { | |
| "question_data": { | |
| "question": question_data["question"], | |
| "explanation": question_data["explanation"], | |
| "metadata": question_data.get("metadata", {}), | |
| "figures": question_data["figures"], | |
| }, | |
| "image_urls": image_urls, | |
| }, | |
| } | |
| logging.info(json.dumps(log_entry)) | |
| return response | |
| except ConnectionError as e: | |
| print(f"Connection error for case {case_id}, question {question_id}: {str(e)}") | |
| print("Retrying after a longer delay...") | |
| time.sleep(30) # Add a longer delay before retry | |
| raise | |
| except TimeoutError as e: | |
| print(f"Timeout error for case {case_id}, question {question_id}: {str(e)}") | |
| print("Retrying with increased timeout...") | |
| raise | |
| except Exception as e: | |
| # Log failed requests too | |
| log_entry = { | |
| "case_id": case_id, | |
| "question_id": question_id, | |
| "timestamp": datetime.now().isoformat(), | |
| "model": MODEL_NAME, | |
| "temperature": temperature, | |
| "status": "error", | |
| "error": str(e), | |
| "input": { | |
| "question_data": { | |
| "question": question_data["question"], | |
| "explanation": question_data["explanation"], | |
| "metadata": question_data.get("metadata", {}), | |
| "figures": question_data["figures"], | |
| }, | |
| "image_urls": image_urls, | |
| }, | |
| } | |
| logging.info(json.dumps(log_entry)) | |
| raise | |
| def extract_answer(response_text: str) -> Optional[str]: | |
| """Extract single letter answer from model response. | |
| Args: | |
| response_text: Raw text response from model | |
| Returns: | |
| Optional[str]: Single letter answer if found, None otherwise | |
| """ | |
| # Convert to uppercase and remove periods | |
| text = response_text.upper().replace(".", "") | |
| # Look for common patterns | |
| patterns = [ | |
| r"ANSWER:\s*([A-F])", # Matches "ANSWER: X" | |
| r"OPTION\s*([A-F])", # Matches "OPTION X" | |
| r"([A-F])\)", # Matches "X)" | |
| r"\b([A-F])\b", # Matches single letter | |
| ] | |
| for pattern in patterns: | |
| matches = re.findall(pattern, text) | |
| if matches: | |
| return matches[0] | |
| return None | |
| def validate_answer(response_text: str) -> Optional[str]: | |
| """Enforce strict single-letter response format. | |
| Args: | |
| response_text: Raw text response from model | |
| Returns: | |
| Optional[str]: Valid single letter answer if found, None otherwise | |
| """ | |
| if not response_text: | |
| return None | |
| # Remove all whitespace and convert to uppercase | |
| cleaned = response_text.strip().upper() | |
| # Check if it's exactly one valid letter | |
| if len(cleaned) == 1 and cleaned in "ABCDEF": | |
| return cleaned | |
| # If not, try to extract just the letter | |
| match = re.search(r"([A-F])", cleaned) | |
| return match.group(1) if match else None | |
| def load_benchmark_questions(case_id: str) -> List[str]: | |
| """Find all question files for a given case ID. | |
| Args: | |
| case_id: ID of the medical case | |
| Returns: | |
| List[str]: List of paths to question files | |
| """ | |
| benchmark_dir = "../benchmark/questions" | |
| return glob.glob(f"{benchmark_dir}/{case_id}/{case_id}_*.json") | |
| def count_total_questions() -> Tuple[int, int]: | |
| """Count total number of cases and questions. | |
| Returns: | |
| Tuple[int, int]: (total_cases, total_questions) | |
| """ | |
| total_cases = len(glob.glob("../benchmark/questions/*")) | |
| total_questions = sum( | |
| len(glob.glob(f"../benchmark/questions/{case_id}/*.json")) | |
| for case_id in os.listdir("../benchmark/questions") | |
| ) | |
| return total_cases, total_questions | |
| def main(): | |
| with open("../data/eurorad_metadata.json", "r") as file: | |
| data = json.load(file) | |
| client = initialize_client() | |
| total_cases, total_questions = count_total_questions() | |
| cases_processed = 0 | |
| questions_processed = 0 | |
| skipped_questions = 0 | |
| print(f"Beginning benchmark evaluation for {MODEL_NAME} with temperature {temperature}") | |
| for case_id, case_details in data.items(): | |
| question_files = load_benchmark_questions(case_id) | |
| if not question_files: | |
| continue | |
| cases_processed += 1 | |
| for question_file in question_files: | |
| with open(question_file, "r") as file: | |
| question_data = json.load(file) | |
| question_id = os.path.basename(question_file).split(".")[0] | |
| questions_processed += 1 | |
| response = create_multimodal_request( | |
| question_data, case_details, case_id, question_id, client | |
| ) | |
| if response is None: | |
| skipped_questions += 1 | |
| print(f"Skipped question: Case ID {case_id}, Question ID {question_id}") | |
| continue | |
| print( | |
| f"Progress: Case {cases_processed}/{total_cases}, Question {questions_processed}/{total_questions}" | |
| ) | |
| print(f"Case ID: {case_id}") | |
| print(f"Question ID: {question_id}") | |
| print(f"Model Answer: {response.choices[0].message.content}") | |
| print(f"Correct Answer: {question_data['answer']}\n") | |
| print(f"\nBenchmark Summary:") | |
| print(f"Total Cases Processed: {cases_processed}") | |
| print(f"Total Questions Processed: {questions_processed}") | |
| print(f"Total Questions Skipped: {skipped_questions}") | |
| if __name__ == "__main__": | |
| main() | |