Spaces:
Runtime error
Runtime error
| from typing import Dict, Optional, Tuple, Type | |
| from pathlib import Path | |
| import uuid | |
| import tempfile | |
| import numpy as np | |
| import pydicom | |
| from PIL import Image | |
| from pydantic import BaseModel, Field | |
| from langchain_core.callbacks import AsyncCallbackManagerForToolRun, CallbackManagerForToolRun | |
| from langchain_core.tools import BaseTool | |
| class DicomProcessorInput(BaseModel): | |
| """Input schema for the DICOM Processor Tool.""" | |
| dicom_path: str = Field(..., description="Path to the DICOM file") | |
| window_center: Optional[float] = Field( | |
| None, description="Window center for contrast adjustment" | |
| ) | |
| window_width: Optional[float] = Field(None, description="Window width for contrast adjustment") | |
| class DicomProcessorTool(BaseTool): | |
| """Tool for processing DICOM files and converting them to PNG images.""" | |
| name: str = "dicom_processor" | |
| description: str = ( | |
| "Processes DICOM medical image files and converts them to standard image format. " | |
| "No tool supports dicom natively, so this tool is used to convert dicom to png. " | |
| "Handles window/level adjustments and proper scaling. " | |
| "Input: Path to DICOM file and optional window/level parameters. " | |
| "Output: Path to processed image file and DICOM metadata." | |
| ) | |
| args_schema: Type[BaseModel] = DicomProcessorInput | |
| temp_dir: Path = None | |
| def __init__(self, temp_dir: Optional[str] = None): | |
| """Initialize the DICOM processor tool.""" | |
| super().__init__() | |
| self.temp_dir = Path(temp_dir if temp_dir else tempfile.mkdtemp()) | |
| self.temp_dir.mkdir(exist_ok=True) | |
| def _apply_windowing(self, img: np.ndarray, center: float, width: float) -> np.ndarray: | |
| """Apply window/level adjustment to the image.""" | |
| img_min = center - width // 2 | |
| img_max = center + width // 2 | |
| img = np.clip(img, img_min, img_max) | |
| img = ((img - img_min) / (width) * 255).astype(np.uint8) | |
| return img | |
| def _process_dicom( | |
| self, | |
| dicom_path: str, | |
| window_center: Optional[float] = None, | |
| window_width: Optional[float] = None, | |
| ) -> Tuple[np.ndarray, Dict]: | |
| """Process DICOM file and extract metadata.""" | |
| dcm = pydicom.dcmread(dicom_path) | |
| img = dcm.pixel_array.astype(float) | |
| # Apply manufacturer's recommended windowing if available and not overridden | |
| if window_center is None and hasattr(dcm, "WindowCenter"): | |
| window_center = dcm.WindowCenter | |
| if isinstance(window_center, list): | |
| window_center = window_center[0] | |
| if window_width is None and hasattr(dcm, "WindowWidth"): | |
| window_width = dcm.WindowWidth | |
| if isinstance(window_width, list): | |
| window_width = window_width[0] | |
| # Apply rescale slope/intercept if available | |
| if hasattr(dcm, "RescaleSlope") and hasattr(dcm, "RescaleIntercept"): | |
| img = img * dcm.RescaleSlope + dcm.RescaleIntercept | |
| # Apply windowing if parameters are available | |
| if window_center is not None and window_width is not None: | |
| img = self._apply_windowing(img, window_center, window_width) | |
| else: | |
| img = ((img - img.min()) / (img.max() - img.min()) * 255).astype(np.uint8) | |
| metadata = { | |
| "PatientID": getattr(dcm, "PatientID", None), | |
| "StudyDate": getattr(dcm, "StudyDate", None), | |
| "Modality": getattr(dcm, "Modality", None), | |
| "PixelSpacing": getattr(dcm, "PixelSpacing", None), | |
| "WindowCenter": window_center, | |
| "WindowWidth": window_width, | |
| "ImageOrientation": getattr(dcm, "ImageOrientationPatient", None), | |
| "ImagePosition": getattr(dcm, "ImagePositionPatient", None), | |
| "BitsStored": getattr(dcm, "BitsStored", None), | |
| } | |
| return img, metadata | |
| def _run( | |
| self, | |
| dicom_path: str, | |
| window_center: Optional[float] = None, | |
| window_width: Optional[float] = None, | |
| run_manager: Optional[CallbackManagerForToolRun] = None, | |
| ) -> Tuple[Dict[str, str], Dict]: | |
| """Process DICOM file and save as viewable image. | |
| Args: | |
| dicom_path: Path to input DICOM file | |
| window_center: Optional center value for windowing | |
| window_width: Optional width value for windowing | |
| run_manager: Optional callback manager | |
| Returns: | |
| Tuple[Dict, Dict]: Output dictionary with processed image path and metadata dictionary | |
| """ | |
| try: | |
| # Process DICOM and save as PNG | |
| img_array, metadata = self._process_dicom(dicom_path, window_center, window_width) | |
| output_path = self.temp_dir / f"processed_dicom_{uuid.uuid4().hex[:8]}.png" | |
| Image.fromarray(img_array).save(output_path) | |
| output = { | |
| "image_path": str(output_path), | |
| } | |
| metadata.update( | |
| { | |
| "original_path": dicom_path, | |
| "output_path": str(output_path), | |
| "analysis_status": "completed", | |
| } | |
| ) | |
| return output, metadata | |
| except Exception as e: | |
| return ( | |
| {"error": str(e)}, | |
| { | |
| "dicom_path": dicom_path, | |
| "analysis_status": "failed", | |
| "error_details": str(e), | |
| }, | |
| ) | |
| async def _arun( | |
| self, | |
| dicom_path: str, | |
| window_center: Optional[float] = None, | |
| window_width: Optional[float] = None, | |
| run_manager: Optional[AsyncCallbackManagerForToolRun] = None, | |
| ) -> Tuple[Dict[str, str], Dict]: | |
| """Async version of _run.""" | |
| return self._run(dicom_path, window_center, window_width) | |