Spaces:
Sleeping
Sleeping
| import os | |
| import sys | |
| import subprocess | |
| import tempfile | |
| import requests | |
| from moviepy.editor import VideoFileClip | |
| try: | |
| import whisper | |
| if not hasattr(whisper, 'load_model'): | |
| raise ImportError | |
| except ImportError: | |
| subprocess.run([sys.executable, "-m", "pip", "install", "--upgrade", "openai-whisper"], check=True) | |
| import whisper | |
| import torch | |
| import librosa | |
| import pandas as pd | |
| from transformers import Wav2Vec2Processor, Wav2Vec2ForSequenceClassification | |
| from huggingface_hub import login | |
| import gradio as gr | |
| # device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| device = 'cpu' | |
| def load_models(): | |
| whisper_model = whisper.load_model('tiny', device=device) | |
| processor = Wav2Vec2Processor.from_pretrained( | |
| 'jonatasgrosman/wav2vec2-large-english' | |
| ) | |
| accent_model = Wav2Vec2ForSequenceClassification.from_pretrained( | |
| 'jonatasgrosman/wav2vec2-large-english' | |
| ).to(device) | |
| accent_model = torch.quantization.quantize_dynamic( | |
| accent_model, {torch.nn.Linear}, dtype=torch.qint8 | |
| ) | |
| return whisper_model, processor, accent_model | |
| whisper_model, processor, accent_model = load_models() | |
| def analyze(video_url: str): | |
| with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_vid: | |
| response = requests.get(video_url, stream=True) | |
| response.raise_for_status() | |
| for chunk in response.iter_content(chunk_size=1024 * 1024): | |
| if chunk: | |
| tmp_vid.write(chunk) | |
| video_path = tmp_vid.name | |
| audio_path = video_path.replace('.mp4', '.wav') | |
| clip = VideoFileClip(video_path) | |
| clip.audio.write_audiofile(audio_path, verbose=False, logger=None) | |
| clip.close() | |
| speech, sr = librosa.load(audio_path, sr=16000) | |
| result = whisper_model.transcribe(speech) | |
| transcript = result.get('text', '') | |
| lang = result.get('language', 'unknown') | |
| if lang != 'en': | |
| transcript = f"[Non-English detected: {lang}]\n" + transcript | |
| inputs = processor(speech, sampling_rate=sr, return_tensors='pt', padding=True) | |
| input_values = inputs.input_values.to(device) | |
| attention_mask = inputs.attention_mask.to(device) | |
| with torch.no_grad(): | |
| logits = accent_model(input_values=input_values, attention_mask=attention_mask).logits | |
| probs = torch.softmax(logits, dim=-1).squeeze().cpu().tolist() | |
| accent_labels = [ | |
| 'American', 'Australian', 'British', 'Canadian', 'Indian', | |
| 'Irish', 'New Zealander', 'South African', 'Welsh' | |
| ] | |
| accent_probs = [(accent_labels[i], probs[i] * 100) for i in range(len(probs))] | |
| accent_probs.sort(key=lambda x: x[1], reverse=True) | |
| top_accent, top_conf = accent_probs[0] | |
| df = pd.DataFrame(accent_probs, columns=['Accent', 'Confidence (%)']) | |
| df = pd.DataFrame(accent_probs, columns=['Accent', 'Confidence (%)']) | |
| try: | |
| os.remove(video_path) | |
| os.remove(audio_path) | |
| except: | |
| pass | |
| return top_accent, f"{top_conf:.2f}%", df | |
| interface = gr.Interface( | |
| fn=analyze, | |
| inputs=gr.Textbox(label='Video URL', placeholder='Enter public MP4 URL'), | |
| outputs=[ | |
| # gr.Textbox(label='Transcript'), | |
| gr.Textbox(label='Predicted Accent'), | |
| gr.Textbox(label='Accent Confidence'), | |
| gr.Dataframe(label='All Accent Probabilities') | |
| ], | |
| title='English Accent Detector', | |
| description='Paste a direct MP4 URL to extract, transcribe, and classify English accents. It is a bit slow since we run Whisper and Wav2Vec2 models on CPU. Please test with short videos.', | |
| examples=[ | |
| ['http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ForBiggerBlazes.mp4'], | |
| ], | |
| allow_flagging='never' | |
| ) | |
| if __name__ == '__main__': | |
| interface.launch() | |