Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,104 +2,51 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
from diffusers import I2VGenXLPipeline
|
| 4 |
from diffusers.utils import export_to_gif, load_image
|
| 5 |
-
import tempfile
|
| 6 |
import spaces
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
|
| 12 |
-
return pipeline
|
| 13 |
-
|
| 14 |
-
import gradio as gr
|
| 15 |
-
import torch
|
| 16 |
-
from diffusers import I2VGenXLPipeline
|
| 17 |
-
from diffusers.utils import export_to_gif, load_image
|
| 18 |
-
import tempfile
|
| 19 |
-
import spaces
|
| 20 |
|
| 21 |
@spaces.GPU
|
| 22 |
-
def
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
return pipeline
|
| 26 |
-
|
| 27 |
-
def generate_gif(prompt, image, negative_prompt, num_inference_steps, guidance_scale, seed):
|
| 28 |
-
# Initialize the pipeline within the function
|
| 29 |
-
pipeline = initialize_pipeline()
|
| 30 |
|
| 31 |
# Set the generator seed
|
| 32 |
-
generator = torch.
|
| 33 |
-
|
| 34 |
-
#
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
generator=generator
|
| 44 |
-
).frames[0]
|
| 45 |
-
else:
|
| 46 |
-
frames = pipeline(
|
| 47 |
-
prompt=prompt,
|
| 48 |
-
num_inference_steps=num_inference_steps,
|
| 49 |
-
negative_prompt=negative_prompt,
|
| 50 |
-
guidance_scale=guidance_scale,
|
| 51 |
-
generator=generator
|
| 52 |
-
).frames[0]
|
| 53 |
|
| 54 |
# Export to GIF
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
export_to_gif(frames, gif_path)
|
| 58 |
|
| 59 |
return gif_path
|
| 60 |
|
| 61 |
-
# Create the Gradio interface
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
# When generating from text, pass an empty string as the image input
|
| 78 |
-
text_generate_button.click(
|
| 79 |
-
fn=generate_gif,
|
| 80 |
-
inputs=[text_prompt, "", text_negative_prompt, text_num_inference_steps, text_guidance_scale, text_seed],
|
| 81 |
-
outputs=text_output_video
|
| 82 |
-
)
|
| 83 |
-
|
| 84 |
-
with gr.TabItem("Generate from Image"):
|
| 85 |
-
with gr.Row():
|
| 86 |
-
with gr.Column():
|
| 87 |
-
image_prompt = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt")
|
| 88 |
-
image_input = gr.Image(type="filepath", label="Input Image")
|
| 89 |
-
image_negative_prompt = gr.Textbox(lines=2, placeholder="Enter your negative prompt here...", label="Negative Prompt")
|
| 90 |
-
image_num_inference_steps = gr.Slider(1, 100, step=1, value=50, label="Number of Inference Steps")
|
| 91 |
-
image_guidance_scale = gr.Slider(1, 20, step=0.1, value=9.0, label="Guidance Scale")
|
| 92 |
-
image_seed = gr.Number(label="Seed", value=8888)
|
| 93 |
-
image_generate_button = gr.Button("Generate GIF")
|
| 94 |
-
|
| 95 |
-
with gr.Column():
|
| 96 |
-
image_output_video = gr.Video(label="Generated GIF")
|
| 97 |
-
|
| 98 |
-
image_generate_button.click(
|
| 99 |
-
fn=generate_gif,
|
| 100 |
-
inputs=[image_prompt, image_input, image_negative_prompt, image_num_inference_steps, image_guidance_scale, image_seed],
|
| 101 |
-
outputs=image_output_video
|
| 102 |
-
)
|
| 103 |
|
| 104 |
# Launch the interface
|
| 105 |
-
|
|
|
|
| 2 |
import torch
|
| 3 |
from diffusers import I2VGenXLPipeline
|
| 4 |
from diffusers.utils import export_to_gif, load_image
|
|
|
|
| 5 |
import spaces
|
| 6 |
|
| 7 |
+
# Initialize the pipeline
|
| 8 |
+
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
|
| 9 |
+
pipeline.enable_model_cpu_offload()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
@spaces.GPU
|
| 12 |
+
def generate_gif(image, prompt, negative_prompt, num_inference_steps, guidance_scale, seed):
|
| 13 |
+
# Load the image
|
| 14 |
+
image = load_image(image).convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Set the generator seed
|
| 17 |
+
generator = torch.manual_seed(seed)
|
| 18 |
+
|
| 19 |
+
# Generate the frames
|
| 20 |
+
frames = pipeline(
|
| 21 |
+
prompt=prompt,
|
| 22 |
+
image=image,
|
| 23 |
+
num_inference_steps=num_inference_steps,
|
| 24 |
+
negative_prompt=negative_prompt,
|
| 25 |
+
guidance_scale=guidance_scale,
|
| 26 |
+
generator=generator
|
| 27 |
+
).frames[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
# Export to GIF
|
| 30 |
+
gif_path = "i2v.gif"
|
| 31 |
+
export_to_gif(frames, gif_path)
|
|
|
|
| 32 |
|
| 33 |
return gif_path
|
| 34 |
|
| 35 |
+
# Create the Gradio interface
|
| 36 |
+
iface = gr.Interface(
|
| 37 |
+
fn=generate_gif,
|
| 38 |
+
inputs=[
|
| 39 |
+
gr.Image(type="filepath", label="Input Image"),
|
| 40 |
+
gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt"),
|
| 41 |
+
gr.Textbox(lines=2, placeholder="Enter your negative prompt here...", label="Negative Prompt"),
|
| 42 |
+
gr.Slider(1, 100, step=1, value=50, label="Number of Inference Steps"),
|
| 43 |
+
gr.Slider(1, 20, step=0.1, value=9.0, label="Guidance Scale"),
|
| 44 |
+
gr.Number(label="Seed", value=8888)
|
| 45 |
+
],
|
| 46 |
+
outputs=gr.File(label="Generated GIF"),
|
| 47 |
+
title="I2VGen-XL GIF Generator",
|
| 48 |
+
description="Generate a GIF from an image and a prompt using the I2VGen-XL model."
|
| 49 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
# Launch the interface
|
| 52 |
+
iface.launch()
|