Spaces:
Build error
Build error
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| import spaces | |
| import logging | |
| # Configure logging | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
| # Load the model and tokenizer | |
| model_name = "mrcuddle/SD-Prompter" | |
| logging.info(f"Loading model and tokenizer for {model_name}") | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| logging.info("Model and tokenizer loaded successfully") | |
| # Function to generate a response | |
| def chat(message, history): | |
| logging.info(f"Received message: {message}") | |
| logging.info(f"Chat history: {history}") | |
| # Combine the message and history into a single input | |
| input_text = " ".join([f"{user}: {msg}" for user, msg in history] + [f"User: {message}"]) | |
| logging.info(f"Input text: {input_text}") | |
| inputs = tokenizer(input_text, return_tensors="pt") | |
| logging.info(f"Tokenized input: {inputs}") | |
| # Generate a response | |
| with torch.no_grad(): | |
| outputs = model.generate(inputs.input_ids, max_length=300, num_return_sequences=1) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| logging.info(f"Generated response: {response}") | |
| # Extract only the new response part | |
| response = response.replace(input_text, "").strip() | |
| logging.info(f"Extracted response: {response}") | |
| # Append the new message and response to the history | |
| history.append(("User", message)) | |
| history.append(("Assistant", response)) | |
| logging.info(f"Updated chat history: {history}") | |
| return history, history | |
| # Create the Gradio chat interface | |
| iface = gr.ChatInterface( | |
| fn=chat, | |
| title="Llama3.2 1B Stable Diffusion Prompter", | |
| description="Generate Stable Diffusion Prompt with Llama3.2" | |
| ) | |
| # Launch the interface | |
| logging.info("Launching Gradio interface") | |
| iface.launch() |