Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,30 +2,45 @@ import gradio as gr
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
| 4 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Load the model and tokenizer
|
| 7 |
model_name = "mrcuddle/SD-Prompter"
|
|
|
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
| 10 |
|
| 11 |
@spaces.GPU
|
| 12 |
# Function to generate a response
|
| 13 |
def chat(message, history):
|
|
|
|
|
|
|
|
|
|
| 14 |
# Combine the message and history into a single input
|
| 15 |
input_text = " ".join([f"{user}: {msg}" for user, msg in history] + [f"User: {message}"])
|
|
|
|
|
|
|
| 16 |
inputs = tokenizer(input_text, return_tensors="pt")
|
|
|
|
| 17 |
|
| 18 |
# Generate a response
|
| 19 |
with torch.no_grad():
|
| 20 |
outputs = model.generate(inputs.input_ids, max_length=300, num_return_sequences=1)
|
| 21 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
| 22 |
|
| 23 |
# Extract only the new response part
|
| 24 |
response = response.replace(input_text, "").strip()
|
|
|
|
| 25 |
|
| 26 |
# Append the new message and response to the history
|
| 27 |
history.append(("User", message))
|
| 28 |
history.append(("Assistant", response))
|
|
|
|
| 29 |
|
| 30 |
return history, history
|
| 31 |
|
|
@@ -37,4 +52,5 @@ iface = gr.ChatInterface(
|
|
| 37 |
)
|
| 38 |
|
| 39 |
# Launch the interface
|
|
|
|
| 40 |
iface.launch()
|
|
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
| 4 |
import spaces
|
| 5 |
+
import logging
|
| 6 |
+
|
| 7 |
+
# Configure logging
|
| 8 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 9 |
|
| 10 |
# Load the model and tokenizer
|
| 11 |
model_name = "mrcuddle/SD-Prompter"
|
| 12 |
+
logging.info(f"Loading model and tokenizer for {model_name}")
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 14 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 15 |
+
logging.info("Model and tokenizer loaded successfully")
|
| 16 |
|
| 17 |
@spaces.GPU
|
| 18 |
# Function to generate a response
|
| 19 |
def chat(message, history):
|
| 20 |
+
logging.info(f"Received message: {message}")
|
| 21 |
+
logging.info(f"Chat history: {history}")
|
| 22 |
+
|
| 23 |
# Combine the message and history into a single input
|
| 24 |
input_text = " ".join([f"{user}: {msg}" for user, msg in history] + [f"User: {message}"])
|
| 25 |
+
logging.info(f"Input text: {input_text}")
|
| 26 |
+
|
| 27 |
inputs = tokenizer(input_text, return_tensors="pt")
|
| 28 |
+
logging.info(f"Tokenized input: {inputs}")
|
| 29 |
|
| 30 |
# Generate a response
|
| 31 |
with torch.no_grad():
|
| 32 |
outputs = model.generate(inputs.input_ids, max_length=300, num_return_sequences=1)
|
| 33 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 34 |
+
logging.info(f"Generated response: {response}")
|
| 35 |
|
| 36 |
# Extract only the new response part
|
| 37 |
response = response.replace(input_text, "").strip()
|
| 38 |
+
logging.info(f"Extracted response: {response}")
|
| 39 |
|
| 40 |
# Append the new message and response to the history
|
| 41 |
history.append(("User", message))
|
| 42 |
history.append(("Assistant", response))
|
| 43 |
+
logging.info(f"Updated chat history: {history}")
|
| 44 |
|
| 45 |
return history, history
|
| 46 |
|
|
|
|
| 52 |
)
|
| 53 |
|
| 54 |
# Launch the interface
|
| 55 |
+
logging.info("Launching Gradio interface")
|
| 56 |
iface.launch()
|