Spaces:
Sleeping
Sleeping
Duplicate from StefanHex/simple-trafo-mech-int
Browse filesCo-authored-by: Stefan Heimersheim <StefanHex@users.noreply.huggingface.co>
- .gitattributes +34 -0
- INFO.md +8 -0
- README.md +14 -0
- app.py +246 -0
- requirements.txt +7 -0
.gitattributes
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
INFO.md
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Trafo Mech Int playground
|
| 2 |
+
|
| 3 |
+
Mechanistic Interpretability for everyone!
|
| 4 |
+
Website to visualise Transformer internals
|
| 5 |
+
|
| 6 |
+
By [Stefan Heimersheim](https://github.com/Stefan-Heimersheim/) and [Jonathan Ng](https://github.com/derpyplops).
|
| 7 |
+
|
| 8 |
+
[Mechanistic Interpretability Hackathon](https://itch.io/jam/mechint) submission.
|
README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Simple Trafo Mech Int
|
| 3 |
+
emoji: 🌍
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: streamlit
|
| 7 |
+
sdk_version: 1.17.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
duplicated_from: StefanHex/simple-trafo-mech-int
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformer_lens import HookedTransformer, utils
|
| 3 |
+
from io import StringIO
|
| 4 |
+
import sys
|
| 5 |
+
import torch
|
| 6 |
+
from functools import partial
|
| 7 |
+
import plotly.offline as pyo
|
| 8 |
+
import plotly.graph_objs as go
|
| 9 |
+
import numpy as np
|
| 10 |
+
import plotly.express as px
|
| 11 |
+
import circuitsvis as cv
|
| 12 |
+
|
| 13 |
+
# Little bit of front end for model selector
|
| 14 |
+
|
| 15 |
+
# Radio buttons
|
| 16 |
+
model_name = st.sidebar.radio("Model (only use patching for\nsmall (<4L) models due to memory limits)", [
|
| 17 |
+
"gelu-1l",
|
| 18 |
+
"gelu-2l",
|
| 19 |
+
"gelu-3l",
|
| 20 |
+
"gelu-4l",
|
| 21 |
+
"attn-only-1l",
|
| 22 |
+
"attn-only-2l",
|
| 23 |
+
"attn-only-3l",
|
| 24 |
+
"attn-only-4l",
|
| 25 |
+
"solu-1l",
|
| 26 |
+
"solu-2l",
|
| 27 |
+
"solu-3l",
|
| 28 |
+
"solu-4l",
|
| 29 |
+
"solu-6l",
|
| 30 |
+
"solu-8l",
|
| 31 |
+
"solu-10l",
|
| 32 |
+
"solu-12l",
|
| 33 |
+
"gpt2-small",
|
| 34 |
+
"gpt2-medium",
|
| 35 |
+
#"gpt2-large",
|
| 36 |
+
#"gpt2-xl",
|
| 37 |
+
], index=1)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# Backend code
|
| 41 |
+
|
| 42 |
+
model = HookedTransformer.from_pretrained(model_name)
|
| 43 |
+
|
| 44 |
+
def predict_next_token(prompt):
|
| 45 |
+
logits = model(prompt)[0,-1]
|
| 46 |
+
answer_index = logits.argmax()
|
| 47 |
+
answer = model.tokenizer.decode(answer_index)
|
| 48 |
+
answer = f"<b>|{answer}|</b> (answer by {model.cfg.model_name})"
|
| 49 |
+
return answer
|
| 50 |
+
|
| 51 |
+
def test_prompt(prompt, answer):
|
| 52 |
+
output = StringIO()
|
| 53 |
+
sys.stdout = output
|
| 54 |
+
utils.test_prompt(prompt, answer, model)
|
| 55 |
+
output = output.getvalue()
|
| 56 |
+
return output
|
| 57 |
+
|
| 58 |
+
def compute_residual_stream_patch(clean_prompt=None, answer=None, corrupt_prompt=None, corrupt_answer=None, layers=None):
|
| 59 |
+
model.reset_hooks()
|
| 60 |
+
clean_answer_index = model.tokenizer.encode(answer)[0]
|
| 61 |
+
corrupt_answer_index = model.tokenizer.encode(corrupt_answer)[0]
|
| 62 |
+
clean_tokens = model.to_str_tokens(clean_prompt)
|
| 63 |
+
_, corrupt_cache = model.run_with_cache(corrupt_prompt)
|
| 64 |
+
# Patching function
|
| 65 |
+
def patch_residual_stream(activations, hook, layer="blocks.6.hook_resid_post", pos=5):
|
| 66 |
+
activations[:, pos, :] = corrupt_cache[layer][:, pos, :]
|
| 67 |
+
return activations
|
| 68 |
+
# Compute logit diffs
|
| 69 |
+
n_layers = len(layers)
|
| 70 |
+
n_pos = len(clean_tokens)
|
| 71 |
+
patching_effect = torch.zeros(n_layers, n_pos)
|
| 72 |
+
for l, layer in enumerate(layers):
|
| 73 |
+
for pos in range(n_pos):
|
| 74 |
+
fwd_hooks = [(layer, partial(patch_residual_stream, layer=layer, pos=pos))]
|
| 75 |
+
prediction_logits = model.run_with_hooks(clean_prompt, fwd_hooks=fwd_hooks)[0, -1]
|
| 76 |
+
patching_effect[l, pos] = prediction_logits[clean_answer_index] - prediction_logits[corrupt_answer_index]
|
| 77 |
+
return patching_effect
|
| 78 |
+
|
| 79 |
+
def compute_attn_patch(clean_prompt=None, answer=None, corrupt_prompt=None, corrupt_answer=None):
|
| 80 |
+
use_attn_result_prev = model.cfg.use_attn_result
|
| 81 |
+
model.cfg.use_attn_result = True
|
| 82 |
+
clean_answer_index = model.tokenizer.encode(answer)[0]
|
| 83 |
+
corrupt_answer_index = model.tokenizer.encode(corrupt_answer)[0]
|
| 84 |
+
clean_tokens = model.to_str_tokens(clean_prompt)
|
| 85 |
+
_, corrupt_cache = model.run_with_cache(corrupt_prompt)
|
| 86 |
+
# Patching function
|
| 87 |
+
def patch_head_result(activations, hook, head=None, pos=None):
|
| 88 |
+
activations[:, pos, head, :] = corrupt_cache[hook.name][:, pos, head, :]
|
| 89 |
+
return activations
|
| 90 |
+
|
| 91 |
+
n_layers = model.cfg.n_layers
|
| 92 |
+
n_heads = model.cfg.n_heads
|
| 93 |
+
n_pos = len(clean_tokens)
|
| 94 |
+
patching_effect = torch.zeros(n_layers*n_heads, n_pos)
|
| 95 |
+
for layer in range(n_layers):
|
| 96 |
+
for head in range(n_heads):
|
| 97 |
+
for pos in range(n_pos):
|
| 98 |
+
fwd_hooks = [(f"blocks.{layer}.attn.hook_result", partial(patch_head_result, head=head, pos=pos))]
|
| 99 |
+
prediction_logits = model.run_with_hooks(clean_prompt, fwd_hooks=fwd_hooks)[0, -1]
|
| 100 |
+
patching_effect[n_heads*layer+head, pos] = prediction_logits[clean_answer_index] - prediction_logits[corrupt_answer_index]
|
| 101 |
+
model.cfg.use_attn_result = use_attn_result_prev
|
| 102 |
+
return patching_effect
|
| 103 |
+
|
| 104 |
+
def imshow(tensor, xlabel="X", ylabel="Y", zlabel=None, xticks=None, yticks=None, c_midpoint=0.0, c_scale="RdBu", **kwargs):
|
| 105 |
+
tensor = utils.to_numpy(tensor)
|
| 106 |
+
xticks = [str(x) for x in xticks]
|
| 107 |
+
yticks = [str(y) for y in yticks]
|
| 108 |
+
labels = {"x": xlabel, "y": ylabel}
|
| 109 |
+
if zlabel is not None:
|
| 110 |
+
labels["color"] = zlabel
|
| 111 |
+
fig = px.imshow(tensor, x=xticks, y=yticks, labels=labels, color_continuous_midpoint=c_midpoint,
|
| 112 |
+
color_continuous_scale=c_scale, **kwargs)
|
| 113 |
+
return fig
|
| 114 |
+
|
| 115 |
+
def plot_residual_stream_patch(clean_prompt=None, answer=None, corrupt_prompt=None, corrupt_answer=None):
|
| 116 |
+
layers = ["blocks.0.hook_resid_pre", *[f"blocks.{i}.hook_resid_post" for i in range(model.cfg.n_layers)]]
|
| 117 |
+
clean_tokens = model.to_str_tokens(clean_prompt)
|
| 118 |
+
token_labels = [f"(pos {i:2}) {t}" for i, t in enumerate(clean_tokens)]
|
| 119 |
+
patching_effect = compute_residual_stream_patch(clean_prompt=clean_prompt, answer=answer, corrupt_prompt=corrupt_prompt, corrupt_answer=corrupt_answer, layers=layers)
|
| 120 |
+
fig = imshow(patching_effect, xticks=token_labels, yticks=layers, xlabel="Position", ylabel="Layer",
|
| 121 |
+
zlabel="Logit Difference", title="Patching residual stream at specific layer and position")
|
| 122 |
+
return fig
|
| 123 |
+
|
| 124 |
+
def plot_attn_patch(clean_prompt=None, answer=None, corrupt_prompt=None, corrupt_answer=None):
|
| 125 |
+
clean_tokens = model.to_str_tokens(clean_prompt)
|
| 126 |
+
n_layers = model.cfg.n_layers
|
| 127 |
+
n_heads = model.cfg.n_heads
|
| 128 |
+
layerhead_labels = [f"{l}.{h}" for l in range(n_layers) for h in range(n_heads)]
|
| 129 |
+
token_labels = [f"(pos {i:2}) {t}" for i, t in enumerate(clean_tokens)]
|
| 130 |
+
patching_effect = compute_attn_patch(clean_prompt=clean_prompt, answer=answer, corrupt_prompt=corrupt_prompt, corrupt_answer=corrupt_answer)
|
| 131 |
+
return imshow(patching_effect, xticks=token_labels, yticks=layerhead_labels, xlabel="Position", ylabel="Layer.Head",
|
| 132 |
+
zlabel="Logit Difference", title=f"Patching attention outputs for specific layer, head, and position", width=600, height=300+200*n_layers)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
# Frontend code
|
| 136 |
+
st.title("Simple Trafo Mech Int")
|
| 137 |
+
st.subheader("Transformer Mechanistic Interpretability")
|
| 138 |
+
st.markdown("Powered by [TransformerLens](https://github.com/neelnanda-io/TransformerLens/)")
|
| 139 |
+
st.markdown("For _what_ these plots are, and _why_, see this [tutorial](https://docs.google.com/document/d/1e6cs8d9QNretWvOLsv_KaMp6kSPWpJEW0GWc0nwjqxo/).")
|
| 140 |
+
|
| 141 |
+
# Predict next token
|
| 142 |
+
st.header("Predict the next token")
|
| 143 |
+
st.markdown("Just a simple test UI, enter a prompt and the model will predict the next token")
|
| 144 |
+
prompt_simple = st.text_input("Prompt:", "Today, the weather is", key="prompt_simple")
|
| 145 |
+
|
| 146 |
+
if "prompt_simple_output" not in st.session_state:
|
| 147 |
+
st.session_state.prompt_simple_output = None
|
| 148 |
+
|
| 149 |
+
if st.button("Run model", key="key_button_prompt_simple"):
|
| 150 |
+
res = predict_next_token(prompt_simple)
|
| 151 |
+
st.session_state.prompt_simple_output = res
|
| 152 |
+
|
| 153 |
+
if st.session_state.prompt_simple_output:
|
| 154 |
+
st.markdown(st.session_state.prompt_simple_output, unsafe_allow_html=True)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
# Test prompt
|
| 158 |
+
st.header("Verbose test prompt")
|
| 159 |
+
st.markdown("Enter a prompt and the correct answer, the model will run the prompt and print the results")
|
| 160 |
+
|
| 161 |
+
prompt = st.text_input("Prompt:", "The most popular programming language is", key="prompt")
|
| 162 |
+
answer = st.text_input("Answer:", " Java", key="answer")
|
| 163 |
+
|
| 164 |
+
if "test_prompt_output" not in st.session_state:
|
| 165 |
+
st.session_state.test_prompt_output = None
|
| 166 |
+
|
| 167 |
+
if st.button("Run model", key="key_button_test_prompt"):
|
| 168 |
+
res = test_prompt(prompt, answer)
|
| 169 |
+
st.session_state.test_prompt_output = res
|
| 170 |
+
|
| 171 |
+
if st.session_state.test_prompt_output:
|
| 172 |
+
st.code(st.session_state.test_prompt_output)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
# Residual stream patching
|
| 176 |
+
|
| 177 |
+
st.header("Residual stream patching")
|
| 178 |
+
st.markdown("Enter a clean prompt, correct answer, corrupt prompt and corrupt answer, the model will compute the patching effect")
|
| 179 |
+
|
| 180 |
+
default_clean_prompt = "Her name was Alex Hart. Tomorrow at lunch time Alex"
|
| 181 |
+
default_clean_answer = "Hart"
|
| 182 |
+
default_corrupt_prompt = "Her name was Alex Carroll. Tomorrow at lunch time Alex"
|
| 183 |
+
default_corrupt_answer = "Carroll"
|
| 184 |
+
|
| 185 |
+
clean_prompt = st.text_input("Clean Prompt:", default_clean_prompt)
|
| 186 |
+
clean_answer = st.text_input("Correct Answer:", default_clean_answer)
|
| 187 |
+
corrupt_prompt = st.text_input("Corrupt Prompt:", default_corrupt_prompt)
|
| 188 |
+
corrupt_answer = st.text_input("Corrupt Answer:", default_corrupt_answer)
|
| 189 |
+
|
| 190 |
+
if "residual_stream_patch_out" not in st.session_state:
|
| 191 |
+
st.session_state.residual_stream_patch_out = None
|
| 192 |
+
|
| 193 |
+
if st.button("Run model", key="key_button_residual_stream_patch"):
|
| 194 |
+
fig = plot_residual_stream_patch(clean_prompt=clean_prompt, answer=clean_answer, corrupt_prompt=corrupt_prompt, corrupt_answer=corrupt_answer)
|
| 195 |
+
st.session_state.residual_stream_patch_out = fig
|
| 196 |
+
|
| 197 |
+
if st.session_state.residual_stream_patch_out:
|
| 198 |
+
st.plotly_chart(st.session_state.residual_stream_patch_out)
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
# Attention head output
|
| 202 |
+
|
| 203 |
+
st.header("Attention head output patching")
|
| 204 |
+
st.markdown("Enter a clean prompt, correct answer, corrupt prompt and corrupt answer, the model will compute the patching effect")
|
| 205 |
+
|
| 206 |
+
clean_prompt_attn = st.text_input("Clean Prompt:", default_clean_prompt, key="key2_clean_prompt_attn")
|
| 207 |
+
clean_answer_attn = st.text_input("Correct Answer:", default_clean_answer, key="key2_clean_answer_attn")
|
| 208 |
+
corrupt_prompt_attn = st.text_input("Corrupt Prompt:", default_corrupt_prompt, key="key2_corrupt_prompt_attn")
|
| 209 |
+
corrupt_answer_attn = st.text_input("Corrupt Answer:", default_corrupt_answer, key="key2_corrupt_answer_attn")
|
| 210 |
+
|
| 211 |
+
if "attn_head_patch_out" not in st.session_state:
|
| 212 |
+
st.session_state.attn_head_patch_out = None
|
| 213 |
+
|
| 214 |
+
if st.button("Run model", key="key_button_attn_head_patch"):
|
| 215 |
+
fig = plot_attn_patch(clean_prompt=clean_prompt_attn, answer=clean_answer_attn, corrupt_prompt=corrupt_prompt_attn, corrupt_answer=corrupt_answer_attn)
|
| 216 |
+
st.session_state.attn_head_patch_out = fig
|
| 217 |
+
|
| 218 |
+
if st.session_state.attn_head_patch_out:
|
| 219 |
+
st.plotly_chart(st.session_state.attn_head_patch_out)
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
# Attention Head Visualization
|
| 223 |
+
|
| 224 |
+
st.header("Attention Pattern Visualization")
|
| 225 |
+
st.markdown("Powered by [CircuitsVis](https://github.com/alan-cooney/CircuitsVis)")
|
| 226 |
+
st.markdown("Enter a prompt, show attention patterns")
|
| 227 |
+
|
| 228 |
+
default_prompt_attn = "Her name was Alex Hart. Tomorrow at lunch time Alex"
|
| 229 |
+
prompt_attn = st.text_input("Prompt:", default_prompt_attn)
|
| 230 |
+
|
| 231 |
+
if "attn_html" not in st.session_state:
|
| 232 |
+
st.session_state.attn_html = None
|
| 233 |
+
|
| 234 |
+
if st.button("Run model", key="key_button_attention_head"):
|
| 235 |
+
_, cache = model.run_with_cache(prompt_attn)
|
| 236 |
+
st.session_state.attn_html = []
|
| 237 |
+
for layer in range(model.cfg.n_layers):
|
| 238 |
+
html = cv.attention.attention_patterns(tokens=model.to_str_tokens(prompt_attn),
|
| 239 |
+
attention=cache[f'blocks.{layer}.attn.hook_pattern'][0])
|
| 240 |
+
st.session_state.attn_html.append(html.show_code())
|
| 241 |
+
|
| 242 |
+
if st.session_state.attn_html:
|
| 243 |
+
for layer in range(len(st.session_state.attn_html)):
|
| 244 |
+
st.write(f"Attention patterns Layer {layer}:")
|
| 245 |
+
st.components.v1.html(st.session_state.attn_html[layer], height=500)
|
| 246 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/neelnanda-io/TransformerLens/
|
| 2 |
+
torch
|
| 3 |
+
flask
|
| 4 |
+
gunicorn
|
| 5 |
+
plotly
|
| 6 |
+
circuitsvis
|
| 7 |
+
streamlit
|