Mv
Browse files- index.html +594 -346
- llm_conf.html +0 -1337
index.html
CHANGED
|
@@ -1,21 +1,21 @@
|
|
| 1 |
<!DOCTYPE html>
|
| 2 |
<html lang="en"><head>
|
| 3 |
-
<script src="
|
| 4 |
-
<script src="
|
| 5 |
-
<script src="
|
| 6 |
-
<script src="
|
| 7 |
-
<link href="
|
| 8 |
-
<link href="
|
| 9 |
-
<link href="
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
<title>
|
| 14 |
<meta name="apple-mobile-web-app-capable" content="yes">
|
| 15 |
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
|
| 16 |
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
|
| 17 |
-
<link rel="stylesheet" href="
|
| 18 |
-
<link rel="stylesheet" href="
|
| 19 |
<style>
|
| 20 |
code{white-space: pre-wrap;}
|
| 21 |
span.smallcaps{font-variant: small-caps;}
|
|
@@ -25,11 +25,12 @@
|
|
| 25 |
ul.task-list{list-style: none;}
|
| 26 |
ul.task-list li input[type="checkbox"] {
|
| 27 |
width: 0.8em;
|
| 28 |
-
margin: 0 0.8em 0.2em -
|
| 29 |
vertical-align: middle;
|
| 30 |
}
|
|
|
|
| 31 |
pre > code.sourceCode { white-space: pre; position: relative; }
|
| 32 |
-
pre > code.sourceCode > span {
|
| 33 |
pre > code.sourceCode > span:empty { height: 1.2em; }
|
| 34 |
.sourceCode { overflow: visible; }
|
| 35 |
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
|
@@ -93,11 +94,11 @@
|
|
| 93 |
code span.vs { color: #abe338; } /* VerbatimString */
|
| 94 |
code span.wa { color: #dcc6e0; } /* Warning */
|
| 95 |
</style>
|
| 96 |
-
<link rel="stylesheet" href="
|
| 97 |
-
<link href="
|
| 98 |
-
<link href="
|
| 99 |
-
<link href="
|
| 100 |
-
<link href="
|
| 101 |
<style type="text/css">
|
| 102 |
|
| 103 |
.callout {
|
|
@@ -136,44 +137,44 @@
|
|
| 136 |
font-weight: 400;
|
| 137 |
}
|
| 138 |
|
| 139 |
-
.callout.callout-
|
| 140 |
margin-top: 0.2em;
|
| 141 |
}
|
| 142 |
|
| 143 |
-
.callout:not(.callout-
|
| 144 |
display: flex;
|
| 145 |
}
|
| 146 |
|
| 147 |
-
.callout:not(.no-icon).callout-
|
| 148 |
padding-left: 1.6em;
|
| 149 |
}
|
| 150 |
|
| 151 |
-
.callout.callout-
|
| 152 |
padding-top: 0.2em;
|
| 153 |
margin-bottom: -0.2em;
|
| 154 |
}
|
| 155 |
|
| 156 |
-
.callout.callout-
|
| 157 |
margin-top: 0.5em;
|
| 158 |
margin-bottom: 0.5em;
|
| 159 |
}
|
| 160 |
|
| 161 |
-
.callout.callout-
|
| 162 |
margin-top: 0;
|
| 163 |
}
|
| 164 |
|
| 165 |
-
.callout.callout-
|
| 166 |
margin-top: 0.7em;
|
| 167 |
}
|
| 168 |
|
| 169 |
-
.callout.callout-style-simple div.callout-
|
| 170 |
border-bottom: none;
|
| 171 |
font-size: .9rem;
|
| 172 |
font-weight: 600;
|
| 173 |
opacity: 75%;
|
| 174 |
}
|
| 175 |
|
| 176 |
-
.callout.callout-style-default div.callout-
|
| 177 |
border-bottom: none;
|
| 178 |
font-weight: 600;
|
| 179 |
opacity: 85%;
|
|
@@ -205,7 +206,7 @@
|
|
| 205 |
background-size: 0.9rem 0.9rem;
|
| 206 |
}
|
| 207 |
|
| 208 |
-
.callout-
|
| 209 |
display: flex
|
| 210 |
}
|
| 211 |
|
|
@@ -218,16 +219,17 @@
|
|
| 218 |
display: none !important;
|
| 219 |
}
|
| 220 |
|
| 221 |
-
.callout.callout-
|
| 222 |
-
|
|
|
|
| 223 |
}
|
| 224 |
|
| 225 |
-
.callout.callout-
|
| 226 |
margin-top: .5rem;
|
| 227 |
padding-right: .5rem;
|
| 228 |
}
|
| 229 |
|
| 230 |
-
.callout:not(.callout-
|
| 231 |
margin-top: 1rem;
|
| 232 |
padding-right: .5rem;
|
| 233 |
}
|
|
@@ -242,7 +244,7 @@
|
|
| 242 |
background-image: url('');
|
| 243 |
}
|
| 244 |
|
| 245 |
-
div.callout-note.callout-style-default .callout-
|
| 246 |
background-color: #dae6fb
|
| 247 |
}
|
| 248 |
|
|
@@ -254,7 +256,7 @@
|
|
| 254 |
background-image: url('');
|
| 255 |
}
|
| 256 |
|
| 257 |
-
div.callout-important.callout-style-default .callout-
|
| 258 |
background-color: #f7dddc
|
| 259 |
}
|
| 260 |
|
|
@@ -266,7 +268,7 @@
|
|
| 266 |
background-image: url('');
|
| 267 |
}
|
| 268 |
|
| 269 |
-
div.callout-warning.callout-style-default .callout-
|
| 270 |
background-color: #fcefdc
|
| 271 |
}
|
| 272 |
|
|
@@ -278,7 +280,7 @@
|
|
| 278 |
background-image: url('');
|
| 279 |
}
|
| 280 |
|
| 281 |
-
div.callout-tip.callout-style-default .callout-
|
| 282 |
background-color: #ccf1e3
|
| 283 |
}
|
| 284 |
|
|
@@ -290,7 +292,7 @@
|
|
| 290 |
background-image: url('');
|
| 291 |
}
|
| 292 |
|
| 293 |
-
div.callout-caution.callout-style-default .callout-
|
| 294 |
background-color: #ffe5d0
|
| 295 |
}
|
| 296 |
|
|
@@ -382,23 +384,18 @@
|
|
| 382 |
margin-right: 0;
|
| 383 |
}
|
| 384 |
</style>
|
| 385 |
-
<script src="
|
| 386 |
-
<script src="
|
| 387 |
-
<link href="
|
| 388 |
</head>
|
| 389 |
<body class="quarto-dark">
|
| 390 |
<div class="reveal">
|
| 391 |
<div class="slides">
|
| 392 |
|
| 393 |
<section id="title-slide" class="quarto-title-block center">
|
| 394 |
-
<h1 class="title">
|
| 395 |
|
| 396 |
<div class="quarto-title-authors">
|
| 397 |
-
<div class="quarto-title-author">
|
| 398 |
-
<div class="quarto-title-author-name">
|
| 399 |
-
Zachary Mueller
|
| 400 |
-
</div>
|
| 401 |
-
</div>
|
| 402 |
</div>
|
| 403 |
|
| 404 |
</section>
|
|
@@ -406,324 +403,554 @@ Zachary Mueller
|
|
| 406 |
<h2>Who am I?</h2>
|
| 407 |
<ul>
|
| 408 |
<li>Zachary Mueller</li>
|
| 409 |
-
<li>
|
| 410 |
<li>API design geek</li>
|
| 411 |
</ul>
|
| 412 |
</section>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
<section id="what-is-accelerate" class="slide level2">
|
| 414 |
<h2>What is 🤗 Accelerate?</h2>
|
| 415 |
<div class="cell" data-reveal="true" data-fig-height="6">
|
| 416 |
<div class="cell-output-display">
|
| 417 |
<div>
|
| 418 |
-
<
|
| 419 |
-
|
| 420 |
-
A
|
| 421 |
-
A --> B["
|
| 422 |
A --> C["Training Library#32;"]
|
| 423 |
A --> D["Big Model<br>Inference#32;"]
|
| 424 |
</pre>
|
| 425 |
-
<div id="mermaid-tooltip-1" class="mermaidTooltip">
|
| 426 |
-
|
| 427 |
</div>
|
| 428 |
-
<p></p>
|
| 429 |
</div>
|
| 430 |
</div>
|
| 431 |
</div>
|
| 432 |
</section>
|
| 433 |
-
<section>
|
| 434 |
-
<
|
| 435 |
-
<
|
| 436 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
</section>
|
| 438 |
-
<section id="
|
| 439 |
-
<h2>
|
| 440 |
-
<p>Launching scripts in different environments is complicated:</p>
|
| 441 |
<ul>
|
| 442 |
-
<li><div class="sourceCode" id="
|
| 443 |
-
<li><div class="sourceCode" id="
|
| 444 |
-
<li><div class="sourceCode" id="
|
| 445 |
</ul>
|
| 446 |
-
<p>
|
| 447 |
</section>
|
| 448 |
-
<section id="
|
| 449 |
-
<h2>
|
| 450 |
-
<
|
| 451 |
-
<div class="sourceCode" id="cb4"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb4-1"><a href="#cb4-1"></a><span class="ex">accelerate</span> launch script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 452 |
-
<p>A single command to launch with <code>DeepSpeed</code>, Fully Sharded Data Parallelism, across single and multi CPUs and GPUs, and to train on TPUs<sup>1</sup> too!</p>
|
| 453 |
-
<aside><ol class="aside-footnotes"><li id="fn1"><p>Without needing to modify your code and create a <code>_mp_fn</code></p></li></ol></aside></section>
|
| 454 |
-
<section id="a-launching-interface-3" class="slide level2">
|
| 455 |
-
<h2>A Launching Interface</h2>
|
| 456 |
-
<p>Generate a device-specific configuration through <code>accelerate config</code></p>
|
| 457 |
-
|
| 458 |
-
<img data-src="CLI.gif" class="r-stretch"></section>
|
| 459 |
-
<section id="a-launching-interface-4" class="slide level2">
|
| 460 |
-
<h2>A Launching Interface</h2>
|
| 461 |
-
<p>Or don’t. <code>accelerate config</code> doesn’t <em>have</em> to be done!</p>
|
| 462 |
-
<div class="sourceCode" id="cb5"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb5-1"><a href="#cb5-1"></a><span class="ex">torchrun</span> <span class="at">--nnodes</span><span class="op">=</span>1 <span class="at">--nproc_per_node</span><span class="op">=</span>2 script.py</span>
|
| 463 |
-
<span id="cb5-2"><a href="#cb5-2"></a><span class="ex">accelerate</span> launch <span class="at">--multi_gpu</span> <span class="at">--nproc_per_node</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 464 |
-
<p>A quick default configuration can be made too:</p>
|
| 465 |
-
<div class="sourceCode" id="cb6"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb6-1"><a href="#cb6-1"></a><span class="ex">accelerate</span> config default</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 466 |
</section>
|
| 467 |
-
<section id="
|
| 468 |
-
<h2>
|
| 469 |
-
<
|
| 470 |
-
<
|
| 471 |
-
<
|
| 472 |
-
|
| 473 |
-
<
|
| 474 |
-
<
|
| 475 |
-
<
|
| 476 |
-
<div class="
|
| 477 |
-
<
|
| 478 |
-
|
| 479 |
-
<span id="
|
| 480 |
-
<span id="
|
| 481 |
-
<span id="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 482 |
</section></section>
|
| 483 |
<section>
|
| 484 |
<section id="a-training-library" class="title-slide slide level1 center">
|
| 485 |
<h1>A Training Library</h1>
|
| 486 |
-
|
| 487 |
-
</section>
|
| 488 |
-
<section id="a-training-library-1" class="slide level2">
|
| 489 |
-
<h2>A Training Library</h2>
|
| 490 |
-
<ul>
|
| 491 |
-
<li>Just showed that its possible using <code>accelerate launch</code> to <em>launch</em> a python script in various distributed environments</li>
|
| 492 |
-
<li>This does <em>not</em> mean that the script will just “use” that code and still run on the new compute efficiently.</li>
|
| 493 |
-
<li>Training on different computes often means <em>many</em> lines of code changed for each specific compute.</li>
|
| 494 |
-
<li>🤗 <code>accelerate</code> solves this by ensuring the same code can be ran on a CPU or GPU, multiples, and on TPUs!</li>
|
| 495 |
-
</ul>
|
| 496 |
-
</section>
|
| 497 |
-
<section id="a-training-library-2" class="slide level2">
|
| 498 |
-
<h2>A Training Library</h2>
|
| 499 |
-
<div class="sourceCode" id="cb9"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
|
| 500 |
-
<span id="cb9-2"><a href="#cb9-2"></a> optimizer.zero_grad()</span>
|
| 501 |
-
<span id="cb9-3"><a href="#cb9-3"></a> inputs, targets <span class="op">=</span> batch</span>
|
| 502 |
-
<span id="cb9-4"><a href="#cb9-4"></a> inputs <span class="op">=</span> inputs.to(device)</span>
|
| 503 |
-
<span id="cb9-5"><a href="#cb9-5"></a> targets <span class="op">=</span> targets.to(device)</span>
|
| 504 |
-
<span id="cb9-6"><a href="#cb9-6"></a> outputs <span class="op">=</span> model(inputs)</span>
|
| 505 |
-
<span id="cb9-7"><a href="#cb9-7"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
|
| 506 |
-
<span id="cb9-8"><a href="#cb9-8"></a> loss.backward()</span>
|
| 507 |
-
<span id="cb9-9"><a href="#cb9-9"></a> optimizer.step()</span>
|
| 508 |
-
<span id="cb9-10"><a href="#cb9-10"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 509 |
</section>
|
| 510 |
-
<section id="a-training-library-
|
| 511 |
-
<h2>A Training Library</h2>
|
| 512 |
-
<div class="columns">
|
| 513 |
-
<div class="column"
|
| 514 |
<p><br><br><br></p>
|
| 515 |
-
<div class="sourceCode" id="
|
| 516 |
-
<span id="
|
| 517 |
-
<span id="
|
| 518 |
-
<span id="
|
| 519 |
-
<span id="
|
| 520 |
-
<span id="
|
| 521 |
-
<span id="
|
| 522 |
-
<span id="
|
| 523 |
-
<span id="
|
| 524 |
-
<span id="
|
| 525 |
-
<span id="
|
| 526 |
-
</div><div class="column"
|
| 527 |
-
<div class="sourceCode" id="
|
| 528 |
-
<span id="
|
| 529 |
-
<span id="
|
| 530 |
-
<span id="
|
| 531 |
-
<span id="
|
| 532 |
-
<span id="
|
| 533 |
-
<span id="
|
| 534 |
-
<span id="
|
| 535 |
-
<span id="
|
| 536 |
-
<span id="
|
| 537 |
-
<span id="
|
| 538 |
-
<span id="
|
| 539 |
-
<span id="
|
| 540 |
-
<span id="
|
| 541 |
-
<span id="
|
| 542 |
-
<span id="
|
| 543 |
-
<span id="
|
| 544 |
-
<span id="
|
| 545 |
</div>
|
| 546 |
</div>
|
| 547 |
</section>
|
| 548 |
-
<section id="a-training-library-
|
| 549 |
-
<h2>A Training Library</h2>
|
| 550 |
-
<
|
| 551 |
-
<
|
| 552 |
-
<
|
| 553 |
-
<li
|
| 554 |
-
<li
|
| 555 |
-
<li
|
| 556 |
-
|
| 557 |
-
</ol>
|
| 558 |
-
</div>
|
| 559 |
</section>
|
| 560 |
<section id="a-training-library-mixed-precision" class="slide level2">
|
| 561 |
-
<h2>A Training Library
|
| 562 |
-
<
|
| 563 |
-
<
|
| 564 |
-
<
|
| 565 |
-
<
|
| 566 |
-
<
|
| 567 |
-
<
|
| 568 |
-
|
| 569 |
-
<span id="cb12-6"><a href="#cb12-6"></a> inputs, targets <span class="op">=</span> batch</span>
|
| 570 |
-
<span id="cb12-7"><a href="#cb12-7"></a> outputs <span class="op">=</span> model(inputs)</span>
|
| 571 |
-
<span id="cb12-8"><a href="#cb12-8"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
|
| 572 |
-
<span id="cb12-9"><a href="#cb12-9"></a> accelerator.backward(loss)</span>
|
| 573 |
-
<span id="cb12-10"><a href="#cb12-10"></a> optimizer.step()</span>
|
| 574 |
-
<span id="cb12-11"><a href="#cb12-11"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 575 |
-
</section>
|
| 576 |
-
<section id="a-training-library-gradient-accumulation" class="slide level2">
|
| 577 |
-
<h2>A Training Library, Gradient Accumulation</h2>
|
| 578 |
-
<p>Gradient accumulation in distributed setups often need extra care to ensure gradients are aligned when they need to be and the backward pass is computationally efficient.</p>
|
| 579 |
-
<p>🤗 <code>accelerate</code> can just easily handle this for you:</p>
|
| 580 |
-
<div class="sourceCode" id="cb13" data-code-line-numbers="2,5"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb13-1"><a href="#cb13-1"></a><span class="im">from</span> accelerate <span class="im">import</span> Accelerator</span>
|
| 581 |
-
<span id="cb13-2"><a href="#cb13-2"></a>accelerator <span class="op">=</span> Accelerator(gradient_accumulation_steps<span class="op">=</span><span class="dv">4</span>)</span>
|
| 582 |
-
<span id="cb13-3"><a href="#cb13-3"></a>...</span>
|
| 583 |
-
<span id="cb13-4"><a href="#cb13-4"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
|
| 584 |
-
<span id="cb13-5"><a href="#cb13-5"></a> <span class="cf">with</span> accelerator.accumulate(model):</span>
|
| 585 |
-
<span id="cb13-6"><a href="#cb13-6"></a> optimizer.zero_grad()</span>
|
| 586 |
-
<span id="cb13-7"><a href="#cb13-7"></a> inputs, targets <span class="op">=</span> batch</span>
|
| 587 |
-
<span id="cb13-8"><a href="#cb13-8"></a> outputs <span class="op">=</span> model(inputs)</span>
|
| 588 |
-
<span id="cb13-9"><a href="#cb13-9"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
|
| 589 |
-
<span id="cb13-10"><a href="#cb13-10"></a> accelerator.backward(loss)</span>
|
| 590 |
-
<span id="cb13-11"><a href="#cb13-11"></a> optimizer.step()</span>
|
| 591 |
-
<span id="cb13-12"><a href="#cb13-12"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 592 |
-
</section>
|
| 593 |
-
<section id="a-training-library-gradient-accumulation-1" class="slide level2">
|
| 594 |
-
<h2>A Training Library, Gradient Accumulation</h2>
|
| 595 |
-
<div class="sourceCode" id="cb14" data-code-line-numbers="5-7,10,11,12,15"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb14-1"><a href="#cb14-1"></a>ddp_model, dataloader <span class="op">=</span> accelerator.prepare(model, dataloader)</span>
|
| 596 |
-
<span id="cb14-2"><a href="#cb14-2"></a></span>
|
| 597 |
-
<span id="cb14-3"><a href="#cb14-3"></a><span class="cf">for</span> index, batch <span class="kw">in</span> <span class="bu">enumerate</span>(dataloader):</span>
|
| 598 |
-
<span id="cb14-4"><a href="#cb14-4"></a> inputs, targets <span class="op">=</span> batch</span>
|
| 599 |
-
<span id="cb14-5"><a href="#cb14-5"></a> <span class="cf">if</span> index <span class="op">!=</span> (<span class="bu">len</span>(dataloader)<span class="op">-</span><span class="dv">1</span>) <span class="kw">or</span> (index <span class="op">%</span> <span class="dv">4</span>) <span class="op">!=</span> <span class="dv">0</span>:</span>
|
| 600 |
-
<span id="cb14-6"><a href="#cb14-6"></a> <span class="co"># Gradients don't sync</span></span>
|
| 601 |
-
<span id="cb14-7"><a href="#cb14-7"></a> <span class="cf">with</span> accelerator.no_sync(model):</span>
|
| 602 |
-
<span id="cb14-8"><a href="#cb14-8"></a> outputs <span class="op">=</span> ddp_model(inputs)</span>
|
| 603 |
-
<span id="cb14-9"><a href="#cb14-9"></a> loss <span class="op">=</span> loss_func(outputs, targets)</span>
|
| 604 |
-
<span id="cb14-10"><a href="#cb14-10"></a> accelerator.backward(loss)</span>
|
| 605 |
-
<span id="cb14-11"><a href="#cb14-11"></a> <span class="cf">else</span>:</span>
|
| 606 |
-
<span id="cb14-12"><a href="#cb14-12"></a> <span class="co"># Gradients finally sync</span></span>
|
| 607 |
-
<span id="cb14-13"><a href="#cb14-13"></a> outputs <span class="op">=</span> ddp_model(inputs)</span>
|
| 608 |
-
<span id="cb14-14"><a href="#cb14-14"></a> loss <span class="op">=</span> loss_func(outputs)</span>
|
| 609 |
-
<span id="cb14-15"><a href="#cb14-15"></a> accelerator.backward(loss)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 610 |
-
</section></section>
|
| 611 |
-
<section>
|
| 612 |
-
<section id="big-model-inference" class="title-slide slide level1 center">
|
| 613 |
-
<h1>Big Model Inference</h1>
|
| 614 |
-
<p>Stable Diffusion taking the world by storm</p>
|
| 615 |
-
</section>
|
| 616 |
-
<section id="bigger-models-higher-compute" class="slide level2">
|
| 617 |
-
<h2>Bigger Models == Higher Compute</h2>
|
| 618 |
-
<p>As more large models were being released, Hugging Face quickly realized there must be a way to continue our decentralization of Machine Learning and have the day-to-day programmer be able to leverage these big models.</p>
|
| 619 |
-
<p>Born out of this effort by Sylvain Gugger:</p>
|
| 620 |
-
<p>🤗 Accelerate: Big Model Inference.</p>
|
| 621 |
</section>
|
| 622 |
-
<section id="
|
| 623 |
-
<h2>
|
| 624 |
-
<div>
|
| 625 |
<ul>
|
| 626 |
-
<li
|
| 627 |
-
<li class="fragment"><p>Super small footprint to load in huge models quickly by not loading in their weights immediatly.</p></li>
|
| 628 |
-
<li class="fragment"><p>As an input gets passed through each layer, we can load and unload <em>parts</em> of the PyTorch model quickly so that only a small portion of the big model is loaded in at a single time.</p></li>
|
| 629 |
-
<li class="fragment"><p>The end result? Stable Diffusion v1 can be ran on < 800mb of vRAM</p></li>
|
| 630 |
</ul>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 631 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 632 |
</section>
|
| 633 |
-
<section id="
|
| 634 |
-
<h2>
|
| 635 |
-
<
|
| 636 |
-
<
|
| 637 |
-
|
| 638 |
-
<
|
| 639 |
-
<
|
| 640 |
-
<
|
| 641 |
-
<
|
| 642 |
-
<
|
| 643 |
-
<
|
| 644 |
-
<
|
| 645 |
-
|
| 646 |
-
<
|
| 647 |
-
</
|
| 648 |
-
<
|
| 649 |
-
<
|
| 650 |
-
<
|
| 651 |
-
<
|
| 652 |
-
<
|
| 653 |
-
<
|
| 654 |
-
<
|
| 655 |
-
<
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
<
|
| 659 |
-
<
|
| 660 |
-
<
|
| 661 |
-
<
|
| 662 |
-
</
|
| 663 |
-
<
|
| 664 |
-
</
|
| 665 |
-
<
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
</
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 669 |
</div>
|
|
|
|
| 670 |
</section>
|
| 671 |
-
<section id="
|
| 672 |
-
<h2>
|
| 673 |
-
<
|
| 674 |
-
<
|
| 675 |
-
<
|
| 676 |
-
</
|
| 677 |
-
|
| 678 |
-
<h2>Sharded Checkpoints - The Code</h2>
|
| 679 |
-
<div class="sourceCode" id="cb17" data-code-line-numbers="1,6-8"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb17-1"><a href="#cb17-1"></a><span class="im">from</span> accelerate <span class="im">import</span> init_empty_weights, load_checkpoint_and_dispatch</span>
|
| 680 |
-
<span id="cb17-2"><a href="#cb17-2"></a></span>
|
| 681 |
-
<span id="cb17-3"><a href="#cb17-3"></a><span class="cf">with</span> init_empty_weights():</span>
|
| 682 |
-
<span id="cb17-4"><a href="#cb17-4"></a> my_model <span class="op">=</span> ModelClass(...)</span>
|
| 683 |
-
<span id="cb17-5"><a href="#cb17-5"></a></span>
|
| 684 |
-
<span id="cb17-6"><a href="#cb17-6"></a>my_model <span class="op">=</span> load_checkpoint_and_dispatch(</span>
|
| 685 |
-
<span id="cb17-7"><a href="#cb17-7"></a> my_model, <span class="st">"sharded-weights"</span>, device_map<span class="op">=</span><span class="st">"auto"</span></span>
|
| 686 |
-
<span id="cb17-8"><a href="#cb17-8"></a>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 687 |
-
<p><code>device_map="auto"</code> will tell 🤗 Accelerate that it should determine where to put each layer of the model:</p>
|
| 688 |
-
<ol type="1">
|
| 689 |
-
<li>Maximum space on the GPU(s)</li>
|
| 690 |
-
<li>Maximum space on the CPU(s)</li>
|
| 691 |
-
<li>Utilize disk space through memory-mapped tensors</li>
|
| 692 |
-
</ol>
|
| 693 |
-
</section>
|
| 694 |
-
<section id="big-model-inference-put-together" class="slide level2">
|
| 695 |
-
<h2>Big Model Inference Put Together</h2>
|
| 696 |
-
<div class="sourceCode" id="cb18"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb18-1"><a href="#cb18-1"></a><span class="im">from</span> accelerate <span class="im">import</span> init_empty_weights, load_checkpoint_and_dispatch</span>
|
| 697 |
-
<span id="cb18-2"><a href="#cb18-2"></a></span>
|
| 698 |
-
<span id="cb18-3"><a href="#cb18-3"></a><span class="cf">with</span> init_empty_weights():</span>
|
| 699 |
-
<span id="cb18-4"><a href="#cb18-4"></a> my_model <span class="op">=</span> ModelClass(...)</span>
|
| 700 |
-
<span id="cb18-5"><a href="#cb18-5"></a></span>
|
| 701 |
-
<span id="cb18-6"><a href="#cb18-6"></a>my_model <span class="op">=</span> load_checkpoint_and_dispatch(</span>
|
| 702 |
-
<span id="cb18-7"><a href="#cb18-7"></a> my_model, <span class="st">"sharded-weights"</span>, device_map<span class="op">=</span><span class="st">"auto"</span></span>
|
| 703 |
-
<span id="cb18-8"><a href="#cb18-8"></a>)</span>
|
| 704 |
-
<span id="cb18-9"><a href="#cb18-9"></a>my_model.<span class="bu">eval</span>()</span>
|
| 705 |
-
<span id="cb18-10"><a href="#cb18-10"></a></span>
|
| 706 |
-
<span id="cb18-11"><a href="#cb18-11"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
|
| 707 |
-
<span id="cb18-12"><a href="#cb18-12"></a> output <span class="op">=</span> my_model(batch)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 708 |
-
</section>
|
| 709 |
-
<section id="is-there-an-easier-way" class="slide level2">
|
| 710 |
-
<h2>Is there an easier way?</h2>
|
| 711 |
-
<p>The <code>transformers</code> library combined with the Hub makes all this code wrapping much easier for you with the <code>pipeline</code></p>
|
| 712 |
-
<div class="sourceCode" id="cb19"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb19-1"><a href="#cb19-1"></a><span class="im">import</span> torch</span>
|
| 713 |
-
<span id="cb19-2"><a href="#cb19-2"></a><span class="im">from</span> transformers <span class="im">import</span> pipeline</span>
|
| 714 |
-
<span id="cb19-3"><a href="#cb19-3"></a>pipe <span class="op">=</span> pipeline(</span>
|
| 715 |
-
<span id="cb19-4"><a href="#cb19-4"></a> task<span class="op">=</span><span class="st">"text-generation"</span>,</span>
|
| 716 |
-
<span id="cb19-5"><a href="#cb19-5"></a> model<span class="op">=</span><span class="st">"EleutherAI/gpt-j-6B"</span>,</span>
|
| 717 |
-
<span id="cb19-6"><a href="#cb19-6"></a> device_map<span class="op">=</span><span class="st">"auto"</span>,</span>
|
| 718 |
-
<span id="cb19-7"><a href="#cb19-7"></a> torch_dtype<span class="op">=</span>torch.float16</span>
|
| 719 |
-
<span id="cb19-8"><a href="#cb19-8"></a>)</span>
|
| 720 |
-
<span id="cb19-9"><a href="#cb19-9"></a></span>
|
| 721 |
-
<span id="cb19-10"><a href="#cb19-10"></a>text <span class="op">=</span> pipe(<span class="st">"This is some generated text, I think"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 722 |
-
</section></section>
|
| 723 |
-
<section>
|
| 724 |
-
<section id="what-about-stable-diffusion" class="title-slide slide level1 center">
|
| 725 |
-
<h1>What about Stable Diffusion?</h1>
|
| 726 |
-
<p>A demo with <code>diffusers</code> & Weights and Biases</p>
|
| 727 |
</section>
|
| 728 |
<section id="some-handy-resources" class="slide level2">
|
| 729 |
<h2>Some Handy Resources</h2>
|
|
@@ -735,29 +962,29 @@ Zachary Mueller
|
|
| 735 |
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/big_modeling">Big Model Inference tutorial</a></li>
|
| 736 |
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/deepspeed">DeepSpeed and 🤗 Accelerate</a></li>
|
| 737 |
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/fsdp">Fully Sharded Data Parallelism and 🤗 Accelerate</a></li>
|
|
|
|
| 738 |
</ul>
|
| 739 |
<div class="footer footer-default">
|
| 740 |
|
| 741 |
</div>
|
| 742 |
</section></section>
|
| 743 |
-
|
| 744 |
</div>
|
| 745 |
</div>
|
| 746 |
|
| 747 |
<script>window.backupDefine = window.define; window.define = undefined;</script>
|
| 748 |
-
<script src="
|
| 749 |
<!-- reveal.js plugins -->
|
| 750 |
-
<script src="
|
| 751 |
-
<script src="
|
| 752 |
-
<script src="
|
| 753 |
-
<script src="
|
| 754 |
-
<script src="
|
| 755 |
|
| 756 |
|
| 757 |
-
<script src="
|
| 758 |
-
<script src="
|
| 759 |
-
<script src="
|
| 760 |
-
<script src="
|
| 761 |
<script>window.define = window.backupDefine; window.backupDefine = undefined;</script>
|
| 762 |
|
| 763 |
<script>
|
|
@@ -767,12 +994,11 @@ Zachary Mueller
|
|
| 767 |
Reveal.initialize({
|
| 768 |
'controlsAuto': true,
|
| 769 |
'previewLinksAuto': false,
|
| 770 |
-
'smaller': false,
|
| 771 |
'pdfSeparateFragments': false,
|
| 772 |
'autoAnimateEasing': "ease",
|
| 773 |
'autoAnimateDuration': 1,
|
| 774 |
'autoAnimateUnmatched': true,
|
| 775 |
-
'menu': {"side":"left","useTextContentForMissingTitles":true,"markers":false,"loadIcons":false,"custom":[{"title":"Tools","icon":"<i class=\"fas fa-gear\"></i>","content":"<ul class=\"slide-menu-items\">\n<li class=\"slide-tool-item active\" data-item=\"0\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.fullscreen(event)\"><kbd>f</kbd> Fullscreen</a></li>\n<li class=\"slide-tool-item\" data-item=\"1\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.speakerMode(event)\"><kbd>s</kbd> Speaker View</a></li>\n<li class=\"slide-tool-item\" data-item=\"2\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>o</kbd> Slide Overview</a></li>\n<li class=\"slide-tool-item\" data-item=\"3\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.
|
| 776 |
'smaller': false,
|
| 777 |
|
| 778 |
// Display controls in the bottom right corner
|
|
@@ -976,9 +1202,23 @@ Zachary Mueller
|
|
| 976 |
tabsets.forEach(function(tabset) {
|
| 977 |
const tabby = new Tabby('#' + tabset.id);
|
| 978 |
});
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 979 |
const clipboard = new window.ClipboardJS('.code-copy-button', {
|
| 980 |
-
|
| 981 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 982 |
}
|
| 983 |
});
|
| 984 |
clipboard.on('success', function(e) {
|
|
@@ -1014,10 +1254,9 @@ Zachary Mueller
|
|
| 1014 |
// clear code selection
|
| 1015 |
e.clearSelection();
|
| 1016 |
});
|
| 1017 |
-
function tippyHover(el, contentFn) {
|
| 1018 |
const config = {
|
| 1019 |
allowHTML: true,
|
| 1020 |
-
content: contentFn,
|
| 1021 |
maxWidth: 500,
|
| 1022 |
delay: 100,
|
| 1023 |
arrow: false,
|
|
@@ -1026,9 +1265,18 @@ Zachary Mueller
|
|
| 1026 |
},
|
| 1027 |
interactive: true,
|
| 1028 |
interactiveBorder: 10,
|
| 1029 |
-
theme: '
|
| 1030 |
-
placement: 'bottom-start'
|
| 1031 |
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1032 |
config['offset'] = [0,0];
|
| 1033 |
config['maxWidth'] = 700;
|
| 1034 |
window.tippy(el, config);
|
|
|
|
| 1 |
<!DOCTYPE html>
|
| 2 |
<html lang="en"><head>
|
| 3 |
+
<script src="llm_conf_files/libs/clipboard/clipboard.min.js"></script>
|
| 4 |
+
<script src="llm_conf_files/libs/quarto-html/tabby.min.js"></script>
|
| 5 |
+
<script src="llm_conf_files/libs/quarto-html/popper.min.js"></script>
|
| 6 |
+
<script src="llm_conf_files/libs/quarto-html/tippy.umd.min.js"></script>
|
| 7 |
+
<link href="llm_conf_files/libs/quarto-html/tippy.css" rel="stylesheet">
|
| 8 |
+
<link href="llm_conf_files/libs/quarto-html/light-border.css" rel="stylesheet">
|
| 9 |
+
<link href="llm_conf_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light">
|
| 10 |
+
<link href="llm_conf_files/libs/quarto-html/quarto-syntax-highlighting-dark.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8">
|
| 11 |
+
<meta name="generator" content="quarto-99.9.9">
|
| 12 |
+
|
| 13 |
+
<title>Scaling Model Training with More Compute, How Do They Do It?</title>
|
| 14 |
<meta name="apple-mobile-web-app-capable" content="yes">
|
| 15 |
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
|
| 16 |
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
|
| 17 |
+
<link rel="stylesheet" href="llm_conf_files/libs/revealjs/dist/reset.css">
|
| 18 |
+
<link rel="stylesheet" href="llm_conf_files/libs/revealjs/dist/reveal.css">
|
| 19 |
<style>
|
| 20 |
code{white-space: pre-wrap;}
|
| 21 |
span.smallcaps{font-variant: small-caps;}
|
|
|
|
| 25 |
ul.task-list{list-style: none;}
|
| 26 |
ul.task-list li input[type="checkbox"] {
|
| 27 |
width: 0.8em;
|
| 28 |
+
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
|
| 29 |
vertical-align: middle;
|
| 30 |
}
|
| 31 |
+
/* CSS for syntax highlighting */
|
| 32 |
pre > code.sourceCode { white-space: pre; position: relative; }
|
| 33 |
+
pre > code.sourceCode > span { line-height: 1.25; }
|
| 34 |
pre > code.sourceCode > span:empty { height: 1.2em; }
|
| 35 |
.sourceCode { overflow: visible; }
|
| 36 |
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
|
|
|
| 94 |
code span.vs { color: #abe338; } /* VerbatimString */
|
| 95 |
code span.wa { color: #dcc6e0; } /* Warning */
|
| 96 |
</style>
|
| 97 |
+
<link rel="stylesheet" href="llm_conf_files/libs/revealjs/dist/theme/quarto.css">
|
| 98 |
+
<link href="llm_conf_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.css" rel="stylesheet">
|
| 99 |
+
<link href="llm_conf_files/libs/revealjs/plugin/reveal-menu/menu.css" rel="stylesheet">
|
| 100 |
+
<link href="llm_conf_files/libs/revealjs/plugin/reveal-menu/quarto-menu.css" rel="stylesheet">
|
| 101 |
+
<link href="llm_conf_files/libs/revealjs/plugin/quarto-support/footer.css" rel="stylesheet">
|
| 102 |
<style type="text/css">
|
| 103 |
|
| 104 |
.callout {
|
|
|
|
| 137 |
font-weight: 400;
|
| 138 |
}
|
| 139 |
|
| 140 |
+
.callout.callout-titled.callout-style-simple .callout-body {
|
| 141 |
margin-top: 0.2em;
|
| 142 |
}
|
| 143 |
|
| 144 |
+
.callout:not(.callout-titled) .callout-body {
|
| 145 |
display: flex;
|
| 146 |
}
|
| 147 |
|
| 148 |
+
.callout:not(.no-icon).callout-titled.callout-style-simple .callout-content {
|
| 149 |
padding-left: 1.6em;
|
| 150 |
}
|
| 151 |
|
| 152 |
+
.callout.callout-titled .callout-header {
|
| 153 |
padding-top: 0.2em;
|
| 154 |
margin-bottom: -0.2em;
|
| 155 |
}
|
| 156 |
|
| 157 |
+
.callout.callout-titled .callout-title p {
|
| 158 |
margin-top: 0.5em;
|
| 159 |
margin-bottom: 0.5em;
|
| 160 |
}
|
| 161 |
|
| 162 |
+
.callout.callout-titled.callout-style-simple .callout-content p {
|
| 163 |
margin-top: 0;
|
| 164 |
}
|
| 165 |
|
| 166 |
+
.callout.callout-titled.callout-style-default .callout-content p {
|
| 167 |
margin-top: 0.7em;
|
| 168 |
}
|
| 169 |
|
| 170 |
+
.callout.callout-style-simple div.callout-title {
|
| 171 |
border-bottom: none;
|
| 172 |
font-size: .9rem;
|
| 173 |
font-weight: 600;
|
| 174 |
opacity: 75%;
|
| 175 |
}
|
| 176 |
|
| 177 |
+
.callout.callout-style-default div.callout-title {
|
| 178 |
border-bottom: none;
|
| 179 |
font-weight: 600;
|
| 180 |
opacity: 85%;
|
|
|
|
| 206 |
background-size: 0.9rem 0.9rem;
|
| 207 |
}
|
| 208 |
|
| 209 |
+
.callout-title {
|
| 210 |
display: flex
|
| 211 |
}
|
| 212 |
|
|
|
|
| 219 |
display: none !important;
|
| 220 |
}
|
| 221 |
|
| 222 |
+
.callout.callout-titled .callout-body > .callout-content > :last-child {
|
| 223 |
+
padding-bottom: 0.5rem;
|
| 224 |
+
margin-bottom: 0;
|
| 225 |
}
|
| 226 |
|
| 227 |
+
.callout.callout-titled .callout-icon::before {
|
| 228 |
margin-top: .5rem;
|
| 229 |
padding-right: .5rem;
|
| 230 |
}
|
| 231 |
|
| 232 |
+
.callout:not(.callout-titled) .callout-icon::before {
|
| 233 |
margin-top: 1rem;
|
| 234 |
padding-right: .5rem;
|
| 235 |
}
|
|
|
|
| 244 |
background-image: url('');
|
| 245 |
}
|
| 246 |
|
| 247 |
+
div.callout-note.callout-style-default .callout-title {
|
| 248 |
background-color: #dae6fb
|
| 249 |
}
|
| 250 |
|
|
|
|
| 256 |
background-image: url('');
|
| 257 |
}
|
| 258 |
|
| 259 |
+
div.callout-important.callout-style-default .callout-title {
|
| 260 |
background-color: #f7dddc
|
| 261 |
}
|
| 262 |
|
|
|
|
| 268 |
background-image: url('');
|
| 269 |
}
|
| 270 |
|
| 271 |
+
div.callout-warning.callout-style-default .callout-title {
|
| 272 |
background-color: #fcefdc
|
| 273 |
}
|
| 274 |
|
|
|
|
| 280 |
background-image: url('');
|
| 281 |
}
|
| 282 |
|
| 283 |
+
div.callout-tip.callout-style-default .callout-title {
|
| 284 |
background-color: #ccf1e3
|
| 285 |
}
|
| 286 |
|
|
|
|
| 292 |
background-image: url('');
|
| 293 |
}
|
| 294 |
|
| 295 |
+
div.callout-caution.callout-style-default .callout-title {
|
| 296 |
background-color: #ffe5d0
|
| 297 |
}
|
| 298 |
|
|
|
|
| 384 |
margin-right: 0;
|
| 385 |
}
|
| 386 |
</style>
|
| 387 |
+
<script src="llm_conf_files/libs/quarto-diagram/mermaid.min.js"></script>
|
| 388 |
+
<script src="llm_conf_files/libs/quarto-diagram/mermaid-init.js"></script>
|
| 389 |
+
<link href="llm_conf_files/libs/quarto-diagram/mermaid.css" rel="stylesheet">
|
| 390 |
</head>
|
| 391 |
<body class="quarto-dark">
|
| 392 |
<div class="reveal">
|
| 393 |
<div class="slides">
|
| 394 |
|
| 395 |
<section id="title-slide" class="quarto-title-block center">
|
| 396 |
+
<h1 class="title">Scaling Model Training with More Compute, How Do They Do It?</h1>
|
| 397 |
|
| 398 |
<div class="quarto-title-authors">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
</div>
|
| 400 |
|
| 401 |
</section>
|
|
|
|
| 403 |
<h2>Who am I?</h2>
|
| 404 |
<ul>
|
| 405 |
<li>Zachary Mueller</li>
|
| 406 |
+
<li>Technical Lead for the 🤗 Accelerate project</li>
|
| 407 |
<li>API design geek</li>
|
| 408 |
</ul>
|
| 409 |
</section>
|
| 410 |
+
<section id="understanding-gpu-usage" class="slide level2">
|
| 411 |
+
<h2>Understanding GPU Usage</h2>
|
| 412 |
+
<ul>
|
| 413 |
+
<li>We can somewhat estimate the memory usage in vanilla full-fine-tuning of models</li>
|
| 414 |
+
<li>Requires certain assumptions (that I’ll be covering):
|
| 415 |
+
<ul>
|
| 416 |
+
<li>Adam optimizer</li>
|
| 417 |
+
<li>Batch size of 1</li>
|
| 418 |
+
</ul></li>
|
| 419 |
+
</ul>
|
| 420 |
+
</section>
|
| 421 |
+
<section id="understanding-gpu-usage-1" class="slide level2">
|
| 422 |
+
<h2>Understanding GPU Usage</h2>
|
| 423 |
+
<p>General estimate (<code>bert-base-cased</code>, 108M params):</p>
|
| 424 |
+
<ul>
|
| 425 |
+
<li>Each parameter is 4 bytes</li>
|
| 426 |
+
<li>Backward ~= 2x the model size</li>
|
| 427 |
+
<li>The optimizer step ~= 4x the model size (1x model, 1x gradients, 2x optimizer):</li>
|
| 428 |
+
</ul>
|
| 429 |
+
<div style="font-size: 50%;">
|
| 430 |
+
<table>
|
| 431 |
+
<thead>
|
| 432 |
+
<tr class="header">
|
| 433 |
+
<th>dtype</th>
|
| 434 |
+
<th style="text-align: left;">Model</th>
|
| 435 |
+
<th style="text-align: center;">Gradients</th>
|
| 436 |
+
<th style="text-align: center;">Backward pass</th>
|
| 437 |
+
<th style="text-align: center;">Optimizer step</th>
|
| 438 |
+
<th style="text-align: center;">Highest</th>
|
| 439 |
+
</tr>
|
| 440 |
+
</thead>
|
| 441 |
+
<tbody>
|
| 442 |
+
<tr class="odd">
|
| 443 |
+
<td>float32</td>
|
| 444 |
+
<td style="text-align: left;">413.18 MB</td>
|
| 445 |
+
<td style="text-align: center;">413.18 MB</td>
|
| 446 |
+
<td style="text-align: center;">826.36 MB</td>
|
| 447 |
+
<td style="text-align: center;">1.61 GB</td>
|
| 448 |
+
<td style="text-align: center;">1.61 GB</td>
|
| 449 |
+
</tr>
|
| 450 |
+
<tr class="even">
|
| 451 |
+
<td>float16</td>
|
| 452 |
+
<td style="text-align: left;">413.18 MB*</td>
|
| 453 |
+
<td style="text-align: center;">619.77 MB</td>
|
| 454 |
+
<td style="text-align: center;">826.36 MB</td>
|
| 455 |
+
<td style="text-align: center;">826.36 MB</td>
|
| 456 |
+
<td style="text-align: center;">826.36 MB</td>
|
| 457 |
+
</tr>
|
| 458 |
+
</tbody>
|
| 459 |
+
</table>
|
| 460 |
+
<p>*All estimations were based off the <a href="https://huggingface.co/spaces/hf-accelerate/model-memory-usage">Model Estimator Tool</a></p>
|
| 461 |
+
</div>
|
| 462 |
+
</section>
|
| 463 |
+
<section id="understanding-gpu-usage-2" class="slide level2">
|
| 464 |
+
<h2>Understanding GPU Usage</h2>
|
| 465 |
+
<p>This works fine for small models, we have cards with anywhere from 12-24GB of GPU memory (on the GPU-poor side).</p>
|
| 466 |
+
<p>But what happens as we scale?</p>
|
| 467 |
+
<p>Here’s <code>llama-3-8B</code> (8.03B parameters)</p>
|
| 468 |
+
<div style="font-size: 50%;">
|
| 469 |
+
<table>
|
| 470 |
+
<thead>
|
| 471 |
+
<tr class="header">
|
| 472 |
+
<th>dtype</th>
|
| 473 |
+
<th style="text-align: left;">Model</th>
|
| 474 |
+
<th style="text-align: center;">Gradients</th>
|
| 475 |
+
<th style="text-align: center;">Backward pass</th>
|
| 476 |
+
<th style="text-align: center;">Optimizer step</th>
|
| 477 |
+
<th style="text-align: center;">Highest</th>
|
| 478 |
+
</tr>
|
| 479 |
+
</thead>
|
| 480 |
+
<tbody>
|
| 481 |
+
<tr class="odd">
|
| 482 |
+
<td>float32</td>
|
| 483 |
+
<td style="text-align: left;">28.21 GB</td>
|
| 484 |
+
<td style="text-align: center;">28.21 GB</td>
|
| 485 |
+
<td style="text-align: center;">56.43 GB</td>
|
| 486 |
+
<td style="text-align: center;">112.84 GB</td>
|
| 487 |
+
<td style="text-align: center;">112.84 GB</td>
|
| 488 |
+
</tr>
|
| 489 |
+
<tr class="even">
|
| 490 |
+
<td>float16</td>
|
| 491 |
+
<td style="text-align: left;">28.21 GB*</td>
|
| 492 |
+
<td style="text-align: center;">42.32 GB</td>
|
| 493 |
+
<td style="text-align: center;">56.43 GB</td>
|
| 494 |
+
<td style="text-align: center;">56.43 GB</td>
|
| 495 |
+
<td style="text-align: center;">56.43 GB</td>
|
| 496 |
+
</tr>
|
| 497 |
+
</tbody>
|
| 498 |
+
</table>
|
| 499 |
+
</div>
|
| 500 |
+
<p>Well, <em>I</em> don’t have 56GB of GPU memory in a single card, let alone 112GB.</p>
|
| 501 |
+
<p>What can we do?</p>
|
| 502 |
+
</section>
|
| 503 |
+
<section>
|
| 504 |
+
<section id="distributed-training" class="title-slide slide level1 center">
|
| 505 |
+
<h1>Distributed Training</h1>
|
| 506 |
+
|
| 507 |
+
</section>
|
| 508 |
+
<section id="kinds-of-training" class="slide level2">
|
| 509 |
+
<h2>Kinds of Training</h2>
|
| 510 |
+
<ul>
|
| 511 |
+
<li>Single GPU:
|
| 512 |
+
<ul>
|
| 513 |
+
<li>No distributed techniques at play</li>
|
| 514 |
+
</ul></li>
|
| 515 |
+
<li>DDP:
|
| 516 |
+
<ul>
|
| 517 |
+
<li>A full copy of the model exists on each device, but data is chunked between each GPU</li>
|
| 518 |
+
</ul></li>
|
| 519 |
+
<li>FSDP & DeepSpeed:
|
| 520 |
+
<ul>
|
| 521 |
+
<li>Split chunks of the model and optimizer states across GPUs, allowing for training bigger models on smaller (multiple) GPUs</li>
|
| 522 |
+
</ul></li>
|
| 523 |
+
</ul>
|
| 524 |
+
</section></section>
|
| 525 |
+
<section>
|
| 526 |
+
<section id="fully-sharded-data-parallelism" class="title-slide slide level1 center">
|
| 527 |
+
<h1>Fully Sharded Data Parallelism</h1>
|
| 528 |
+
|
| 529 |
+
</section>
|
| 530 |
+
<section id="fully-sharded-data-parallelism-1" class="slide level2">
|
| 531 |
+
<h2>Fully Sharded Data Parallelism</h2>
|
| 532 |
+
|
| 533 |
+
<img data-src="fsdp.png" id="fig-539a35d47e664c97a50115a146a7f1bd-1" class="r-stretch quarto-figure-center"><aside class="notes">
|
| 534 |
+
<ul>
|
| 535 |
+
<li>Take the model and split it across <code>n</code> GPUs</li>
|
| 536 |
+
<li>Each GPU computes the shard’s gradients</li>
|
| 537 |
+
<li>At the end, all gradients are synchronized and the final full model gradient is calculated</li>
|
| 538 |
+
<li>The backward pass can then be performed</li>
|
| 539 |
+
</ul>
|
| 540 |
+
<style type="text/css">
|
| 541 |
+
span.MJX_Assistive_MathML {
|
| 542 |
+
position:absolute!important;
|
| 543 |
+
clip: rect(1px, 1px, 1px, 1px);
|
| 544 |
+
padding: 1px 0 0 0!important;
|
| 545 |
+
border: 0!important;
|
| 546 |
+
height: 1px!important;
|
| 547 |
+
width: 1px!important;
|
| 548 |
+
overflow: hidden!important;
|
| 549 |
+
display:block!important;
|
| 550 |
+
}</style></aside>
|
| 551 |
+
</section>
|
| 552 |
+
<section id="fsdp-getting-parameter-specific" class="slide level2">
|
| 553 |
+
<h2>FSDP: Getting parameter specific</h2>
|
| 554 |
+
<ul>
|
| 555 |
+
<li>Different parameters can dicatate how much memory is needed for total GPU training across multiple GPUs</li>
|
| 556 |
+
<li>These include how model weights are sharded, gradients, and more.</li>
|
| 557 |
+
<li>I’ll cover some important ones I needed when doing a Full-Fine-Tune of Llama-3-8B <em>without PEFT</em> on 2x4090’s</li>
|
| 558 |
+
</ul>
|
| 559 |
+
</section>
|
| 560 |
+
<section id="sharding_strategy" class="slide level2">
|
| 561 |
+
<h2><code>sharding_strategy</code></h2>
|
| 562 |
+
<ul>
|
| 563 |
+
<li>Dictates the level of divving resources to perform
|
| 564 |
+
<ul>
|
| 565 |
+
<li><code>FULL_SHARD</code>: Includes optimizer states, gradients, and parameters</li>
|
| 566 |
+
<li><code>SHARD_GRAD_OP</code>: Includes optimizer states and gradients</li>
|
| 567 |
+
<li><code>NO_SHARD</code>: Normal DDP</li>
|
| 568 |
+
<li><code>HYBRID_SHARD</code>: Includes optimizer states, gradients, and parameters but each node has the full model</li>
|
| 569 |
+
</ul>
|
| 570 |
+
<aside class="notes">
|
| 571 |
+
<pre><code>FULL_SHARD:
|
| 572 |
+
Parameters, Gradients, Optimizer States: All are sharded.
|
| 573 |
+
Parameters Handling: Unshard before forward pass, reshard after forward pass, unshard before backward pass, reshard after backward pass.
|
| 574 |
+
Gradients Handling: Synchronize and shard after backward pass.
|
| 575 |
+
Optimizer States: Updated locally per rank.</code></pre>
|
| 576 |
+
<p>SHARD_GRAD_OP: Gradients and Optimizer States: Sharded during computation. Parameters: Unshard before forward pass, remain unsharded during forward pass, reshard after backward pass. Inside no_sync(): Parameters are not resharded after backward computation. Optimizer States: Updated locally per rank.</p>
|
| 577 |
+
<p>NO_SHARD: Parameters, Gradients, Optimizer States: Not sharded, replicated across ranks. Gradients Handling: Synchronized via all-reduce after backward pass. Optimizer States: Updated locally per rank.</p>
|
| 578 |
+
<p>HYBRID_SHARD: Parameters, Gradients, Optimizer States: Combines FULL_SHARD within a node and replicates parameters across nodes. Communication: Expensive operations like all-gathers and reduce-scatters are limited to within a node, enhancing performance for medium-sized models.</p>
|
| 579 |
+
<style type="text/css">
|
| 580 |
+
span.MJX_Assistive_MathML {
|
| 581 |
+
position:absolute!important;
|
| 582 |
+
clip: rect(1px, 1px, 1px, 1px);
|
| 583 |
+
padding: 1px 0 0 0!important;
|
| 584 |
+
border: 0!important;
|
| 585 |
+
height: 1px!important;
|
| 586 |
+
width: 1px!important;
|
| 587 |
+
overflow: hidden!important;
|
| 588 |
+
display:block!important;
|
| 589 |
+
}</style></aside></li>
|
| 590 |
+
</ul>
|
| 591 |
+
</section>
|
| 592 |
+
<section id="auto_wrap_policy" class="slide level2">
|
| 593 |
+
<h2><code>auto_wrap_policy</code>:</h2>
|
| 594 |
+
<ul>
|
| 595 |
+
<li>How the model should be split</li>
|
| 596 |
+
<li>Can be either <code>TRANSFORMER_BASED_WRAP</code> or <code>SIZE_BASED_WRAP</code></li>
|
| 597 |
+
<li><code>TRANSFORMER</code>/<code>fsdp_transformers_layer_cls_to_wrap</code>:
|
| 598 |
+
<ul>
|
| 599 |
+
<li>Need to declare the layer</li>
|
| 600 |
+
<li>Generally <code>transformers</code> has good defaults</li>
|
| 601 |
+
</ul></li>
|
| 602 |
+
<li><code>SIZE</code>/<code>fsdp_min_num_param</code>:
|
| 603 |
+
<ul>
|
| 604 |
+
<li>Number of total parameters in a shard</li>
|
| 605 |
+
</ul></li>
|
| 606 |
+
</ul>
|
| 607 |
+
</section>
|
| 608 |
+
<section id="offload_params" class="slide level2">
|
| 609 |
+
<h2><code>offload_params</code>:</h2>
|
| 610 |
+
<ul>
|
| 611 |
+
<li>Offloads the parameters and gradients to the CPU if they can’t fit into memory</li>
|
| 612 |
+
<li>Allows you to train much larger models locally, but will be much slower</li>
|
| 613 |
+
</ul>
|
| 614 |
+
<blockquote>
|
| 615 |
+
<p>Case: FFT of Llama-3-8B with <code>fsdp_offload_params</code> on 2x4090 GPUs was 72hrs, vs ~an hour or two when using 1xH100</p>
|
| 616 |
+
</blockquote>
|
| 617 |
+
</section>
|
| 618 |
+
<section id="cpu_ram_efficient_loading-and-sync_module_states" class="slide level2">
|
| 619 |
+
<h2><code>cpu_ram_efficient_loading</code> and <code>sync_module_states</code></h2>
|
| 620 |
+
<ul>
|
| 621 |
+
<li>Uses the idea behind big model inference/the <code>meta</code> device to load in the model to the GPU in a low-ram scenario</li>
|
| 622 |
+
<li>Rather than needing <code>model_size</code> * <code>n_gpus</code> RAM, we can load the model on a single node and then send the weights directly to each shard when the time is right via <code>sync_module_states</code></li>
|
| 623 |
+
</ul>
|
| 624 |
+
</section></section>
|
| 625 |
+
<section>
|
| 626 |
+
<section id="tying-this-to-accelerate" class="title-slide slide level1 center">
|
| 627 |
+
<h1>Tying this to 🤗 Accelerate</h1>
|
| 628 |
+
|
| 629 |
+
</section>
|
| 630 |
+
<section id="tying-this-to-accelerate-1" class="slide level2">
|
| 631 |
+
<h2>Tying this to 🤗 Accelerate</h2>
|
| 632 |
+
<ul>
|
| 633 |
+
<li>So far we’ve covered the theory, but how do we put it into practice</li>
|
| 634 |
+
<li>By using a library that’s at the heart of the entire open-source ecosystem</li>
|
| 635 |
+
</ul>
|
| 636 |
+
<div style="font-size: 60%;padding-left:10%;padding-top:0%;">
|
| 637 |
+
<ul>
|
| 638 |
+
<li>Nearly all of 🤗</li>
|
| 639 |
+
<li><code>axolotl</code></li>
|
| 640 |
+
<li><code>fastai</code></li>
|
| 641 |
+
<li><code>FastChat</code></li>
|
| 642 |
+
<li><code>lucidrains</code></li>
|
| 643 |
+
<li><code>kornia</code></li>
|
| 644 |
+
</ul>
|
| 645 |
+
</div>
|
| 646 |
+
<p>Are you using it and you don’t even know?</p>
|
| 647 |
+
</section>
|
| 648 |
<section id="what-is-accelerate" class="slide level2">
|
| 649 |
<h2>What is 🤗 Accelerate?</h2>
|
| 650 |
<div class="cell" data-reveal="true" data-fig-height="6">
|
| 651 |
<div class="cell-output-display">
|
| 652 |
<div>
|
| 653 |
+
<div>
|
| 654 |
+
<pre class="mermaid mermaid-js">graph LR
|
| 655 |
+
A(("🤗 Accelerate#32;"))
|
| 656 |
+
A --> B["CLI Interface#32;"]
|
| 657 |
A --> C["Training Library#32;"]
|
| 658 |
A --> D["Big Model<br>Inference#32;"]
|
| 659 |
</pre>
|
|
|
|
|
|
|
| 660 |
</div>
|
|
|
|
| 661 |
</div>
|
| 662 |
</div>
|
| 663 |
</div>
|
| 664 |
</section>
|
| 665 |
+
<section id="a-cli-interface" class="slide level2">
|
| 666 |
+
<h2>A CLI Interface</h2>
|
| 667 |
+
<ul>
|
| 668 |
+
<li><code>accelerate config</code>
|
| 669 |
+
<ul>
|
| 670 |
+
<li>Configure the environment</li>
|
| 671 |
+
</ul></li>
|
| 672 |
+
<li><code>accelerate estimate-memory</code>
|
| 673 |
+
<ul>
|
| 674 |
+
<li>How to guess vRAM requirements</li>
|
| 675 |
+
</ul></li>
|
| 676 |
+
<li><code>accelerate launch</code>
|
| 677 |
+
<ul>
|
| 678 |
+
<li>How to run your script</li>
|
| 679 |
+
</ul></li>
|
| 680 |
+
</ul>
|
| 681 |
</section>
|
| 682 |
+
<section id="launching-distributed-training-is-hard" class="slide level2">
|
| 683 |
+
<h2>Launching distributed training is hard</h2>
|
|
|
|
| 684 |
<ul>
|
| 685 |
+
<li><div class="sourceCode" id="cb2"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb2-1"><a href="#cb2-1"></a><span class="ex">python</span> script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
|
| 686 |
+
<li><div class="sourceCode" id="cb3"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb3-1"><a href="#cb3-1"></a><span class="ex">torchrun</span> <span class="at">--nnodes</span><span class="op">=</span>1 <span class="at">--nproc_per_node</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
|
| 687 |
+
<li><div class="sourceCode" id="cb4"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb4-1"><a href="#cb4-1"></a><span class="ex">deepspeed</span> <span class="at">--num_gpus</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
|
| 688 |
</ul>
|
| 689 |
+
<p>How can we make this better?</p>
|
| 690 |
</section>
|
| 691 |
+
<section id="accelerate-launch" class="slide level2">
|
| 692 |
+
<h2><code>accelerate launch</code></h2>
|
| 693 |
+
<div class="sourceCode" id="cb5"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb5-1"><a href="#cb5-1"></a><span class="ex">accelerate</span> launch script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 694 |
</section>
|
| 695 |
+
<section id="accelerate-config" class="slide level2">
|
| 696 |
+
<h2><code>accelerate config</code></h2>
|
| 697 |
+
<ul>
|
| 698 |
+
<li>Rely on <code>config.yaml</code> files</li>
|
| 699 |
+
<li>Choose to either running <code>accelerate config</code> or write your own:</li>
|
| 700 |
+
</ul>
|
| 701 |
+
<div class="columns" style="font-size: 50%;padding-left:10%;">
|
| 702 |
+
<div class="column" style="width:40%;">
|
| 703 |
+
<div class="code-with-filename">
|
| 704 |
+
<div class="code-with-filename-file">
|
| 705 |
+
<pre><strong>ddp_config.yaml</strong></pre>
|
| 706 |
+
</div>
|
| 707 |
+
<div class="sourceCode" id="cb6" data-filename="ddp_config.yaml"><pre class="sourceCode numberSource yaml number-lines code-with-copy"><code class="sourceCode yaml"><span id="cb6-1"><a href="#cb6-1"></a><span class="fu">compute_environment</span><span class="kw">:</span><span class="at"> LOCAL_MACHINE</span></span>
|
| 708 |
+
<span id="cb6-2"><a href="#cb6-2"></a><span class="fu">distributed_type</span><span class="kw">:</span><span class="at"> MULTI_GPU</span></span>
|
| 709 |
+
<span id="cb6-3"><a href="#cb6-3"></a><span class="fu">main_training_function</span><span class="kw">:</span><span class="at"> main</span></span>
|
| 710 |
+
<span id="cb6-4"><a href="#cb6-4"></a><span class="fu">mixed_precision</span><span class="kw">:</span><span class="at"> bf16</span></span>
|
| 711 |
+
<span id="cb6-5"><a href="#cb6-5"></a><span class="fu">num_machines</span><span class="kw">:</span><span class="at"> </span><span class="dv">1</span></span>
|
| 712 |
+
<span id="cb6-6"><a href="#cb6-6"></a><span class="fu">num_processes</span><span class="kw">:</span><span class="at"> </span><span class="dv">8</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 713 |
+
</div>
|
| 714 |
+
</div><div class="column" style="width:40%;">
|
| 715 |
+
<div class="code-with-filename">
|
| 716 |
+
<div class="code-with-filename-file">
|
| 717 |
+
<pre><strong>fsdp_config.yaml</strong></pre>
|
| 718 |
+
</div>
|
| 719 |
+
<div class="sourceCode" id="cb7" data-filename="fsdp_config.yaml"><pre class="sourceCode numberSource yaml number-lines code-with-copy"><code class="sourceCode yaml"><span id="cb7-1"><a href="#cb7-1"></a><span class="fu">compute_environment</span><span class="kw">:</span><span class="at"> LOCAL_MACHINE</span></span>
|
| 720 |
+
<span id="cb7-2"><a href="#cb7-2"></a><span class="fu">distributed_type</span><span class="kw">:</span><span class="at"> FSDP</span></span>
|
| 721 |
+
<span id="cb7-3"><a href="#cb7-3"></a><span class="fu">fsdp_config</span><span class="kw">:</span></span>
|
| 722 |
+
<span id="cb7-4"><a href="#cb7-4"></a><span class="at"> </span><span class="fu">fsdp_auto_wrap_policy</span><span class="kw">:</span><span class="at"> TRANSFORMER_BASED_WRAP</span></span>
|
| 723 |
+
<span id="cb7-5"><a href="#cb7-5"></a><span class="at"> </span><span class="fu">fsdp_backward_prefetch</span><span class="kw">:</span><span class="at"> BACKWARD_PRE</span></span>
|
| 724 |
+
<span id="cb7-6"><a href="#cb7-6"></a><span class="at"> </span><span class="fu">fsdp_cpu_ram_efficient_loading</span><span class="kw">:</span><span class="at"> </span><span class="ch">true</span></span>
|
| 725 |
+
<span id="cb7-7"><a href="#cb7-7"></a><span class="at"> </span><span class="fu">fsdp_forward_prefetch</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span>
|
| 726 |
+
<span id="cb7-8"><a href="#cb7-8"></a><span class="at"> </span><span class="fu">fsdp_offload_params</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span>
|
| 727 |
+
<span id="cb7-9"><a href="#cb7-9"></a><span class="at"> </span><span class="fu">fsdp_sharding_strategy</span><span class="kw">:</span><span class="at"> FULL_SHARD</span></span>
|
| 728 |
+
<span id="cb7-10"><a href="#cb7-10"></a><span class="at"> </span><span class="fu">fsdp_state_dict_type</span><span class="kw">:</span><span class="at"> SHARDED_STATE_DICT</span></span>
|
| 729 |
+
<span id="cb7-11"><a href="#cb7-11"></a><span class="at"> </span><span class="fu">fsdp_sync_module_states</span><span class="kw">:</span><span class="at"> </span><span class="ch">true</span></span>
|
| 730 |
+
<span id="cb7-12"><a href="#cb7-12"></a><span class="at"> </span><span class="fu">fsdp_use_orig_params</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span>
|
| 731 |
+
<span id="cb7-13"><a href="#cb7-13"></a><span class="fu">main_training_function</span><span class="kw">:</span><span class="at"> main</span></span>
|
| 732 |
+
<span id="cb7-14"><a href="#cb7-14"></a><span class="fu">mixed_precision</span><span class="kw">:</span><span class="at"> bf16</span></span>
|
| 733 |
+
<span id="cb7-15"><a href="#cb7-15"></a><span class="fu">num_machines</span><span class="kw">:</span><span class="at"> </span><span class="dv">1</span></span>
|
| 734 |
+
<span id="cb7-16"><a href="#cb7-16"></a><span class="fu">num_processes</span><span class="kw">:</span><span class="at"> </span><span class="dv">8</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 735 |
+
</div>
|
| 736 |
+
</div>
|
| 737 |
+
</div>
|
| 738 |
</section></section>
|
| 739 |
<section>
|
| 740 |
<section id="a-training-library" class="title-slide slide level1 center">
|
| 741 |
<h1>A Training Library</h1>
|
| 742 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 743 |
</section>
|
| 744 |
+
<section id="a-training-library-the-code" class="slide level2">
|
| 745 |
+
<h2>A Training Library: The Code</h2>
|
| 746 |
+
<div class="columns" style="font-size: 50%;">
|
| 747 |
+
<div class="column">
|
| 748 |
<p><br><br><br></p>
|
| 749 |
+
<div class="sourceCode" id="cb8" data-code-line-numbers="5-6,9"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1"></a><span class="co"># For alignment purposes</span></span>
|
| 750 |
+
<span id="cb8-2"><a href="#cb8-2"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
|
| 751 |
+
<span id="cb8-3"><a href="#cb8-3"></a> optimizer.zero_grad()</span>
|
| 752 |
+
<span id="cb8-4"><a href="#cb8-4"></a> inputs, targets <span class="op">=</span> batch</span>
|
| 753 |
+
<span id="cb8-5"><a href="#cb8-5"></a> inputs <span class="op">=</span> inputs.to(device)</span>
|
| 754 |
+
<span id="cb8-6"><a href="#cb8-6"></a> targets <span class="op">=</span> targets.to(device)</span>
|
| 755 |
+
<span id="cb8-7"><a href="#cb8-7"></a> outputs <span class="op">=</span> model(inputs)</span>
|
| 756 |
+
<span id="cb8-8"><a href="#cb8-8"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
|
| 757 |
+
<span id="cb8-9"><a href="#cb8-9"></a> loss.backward()</span>
|
| 758 |
+
<span id="cb8-10"><a href="#cb8-10"></a> optimizer.step()</span>
|
| 759 |
+
<span id="cb8-11"><a href="#cb8-11"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 760 |
+
</div><div class="column">
|
| 761 |
+
<div class="sourceCode" id="cb9" data-code-line-numbers="1-7,12-13,16"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1"></a><span class="im">from</span> accelerate <span class="im">import</span> Accelerator</span>
|
| 762 |
+
<span id="cb9-2"><a href="#cb9-2"></a>accelerator <span class="op">=</span> Accelerator()</span>
|
| 763 |
+
<span id="cb9-3"><a href="#cb9-3"></a>dataloader, model, optimizer scheduler <span class="op">=</span> (</span>
|
| 764 |
+
<span id="cb9-4"><a href="#cb9-4"></a> accelerator.prepare(</span>
|
| 765 |
+
<span id="cb9-5"><a href="#cb9-5"></a> dataloader, model, optimizer, scheduler</span>
|
| 766 |
+
<span id="cb9-6"><a href="#cb9-6"></a> )</span>
|
| 767 |
+
<span id="cb9-7"><a href="#cb9-7"></a>)</span>
|
| 768 |
+
<span id="cb9-8"><a href="#cb9-8"></a></span>
|
| 769 |
+
<span id="cb9-9"><a href="#cb9-9"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
|
| 770 |
+
<span id="cb9-10"><a href="#cb9-10"></a> optimizer.zero_grad()</span>
|
| 771 |
+
<span id="cb9-11"><a href="#cb9-11"></a> inputs, targets <span class="op">=</span> batch</span>
|
| 772 |
+
<span id="cb9-12"><a href="#cb9-12"></a> <span class="co"># inputs = inputs.to(device)</span></span>
|
| 773 |
+
<span id="cb9-13"><a href="#cb9-13"></a> <span class="co"># targets = targets.to(device)</span></span>
|
| 774 |
+
<span id="cb9-14"><a href="#cb9-14"></a> outputs <span class="op">=</span> model(inputs)</span>
|
| 775 |
+
<span id="cb9-15"><a href="#cb9-15"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
|
| 776 |
+
<span id="cb9-16"><a href="#cb9-16"></a> accelerator.backward(loss) <span class="co"># loss.backward()</span></span>
|
| 777 |
+
<span id="cb9-17"><a href="#cb9-17"></a> optimizer.step()</span>
|
| 778 |
+
<span id="cb9-18"><a href="#cb9-18"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 779 |
</div>
|
| 780 |
</div>
|
| 781 |
</section>
|
| 782 |
+
<section id="a-training-library-how-scaling-works" class="slide level2">
|
| 783 |
+
<h2>A Training Library: How Scaling Works</h2>
|
| 784 |
+
<ul>
|
| 785 |
+
<li>Accelerate’s DataLoaders and schedulers work off of a sharding mindset</li>
|
| 786 |
+
<li>Rather than repeating the same data across <code>n</code> nodes, we instead split it</li>
|
| 787 |
+
<li>Speeds up training linearly</li>
|
| 788 |
+
<li>Given a batch size of 16 on a single GPU, to recreate this across 8 GPUs you would use a batch size of 2</li>
|
| 789 |
+
<li>This also means the scheduler will be stepped <code>n</code> GPUs at a time per “global step”</li>
|
| 790 |
+
</ul>
|
|
|
|
|
|
|
| 791 |
</section>
|
| 792 |
<section id="a-training-library-mixed-precision" class="slide level2">
|
| 793 |
+
<h2>A Training Library: Mixed Precision</h2>
|
| 794 |
+
<ul>
|
| 795 |
+
<li>This may be a bit different than your “normal” idea of mixed precision.</li>
|
| 796 |
+
<li>We do <strong>not</strong> convert the model weights to BF16/FP16</li>
|
| 797 |
+
<li>Instead we <strong>wrap the forward pass</strong> with <code>autocast</code> to convert the gradients automatically</li>
|
| 798 |
+
<li>This preserves the original precision of the weights, which leads to stable training and better fine-tuning later on.</li>
|
| 799 |
+
<li><strong>If you use <code>.bf16()</code> weights, you are STUCK in bf16 perminantly</strong></li>
|
| 800 |
+
</ul>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 801 |
</section>
|
| 802 |
+
<section id="a-training-library-mixed-precision-1" class="slide level2">
|
| 803 |
+
<h2>A Training Library: Mixed Precision</h2>
|
|
|
|
| 804 |
<ul>
|
| 805 |
+
<li>Let’s tie that back up to the model estimator with neat tools like NVIDIA’s TransformerEngine</li>
|
|
|
|
|
|
|
|
|
|
| 806 |
</ul>
|
| 807 |
+
<div style="font-size: 60%;">
|
| 808 |
+
<table style="width:100%;">
|
| 809 |
+
<colgroup>
|
| 810 |
+
<col style="width: 14%">
|
| 811 |
+
<col style="width: 14%">
|
| 812 |
+
<col style="width: 14%">
|
| 813 |
+
<col style="width: 14%">
|
| 814 |
+
<col style="width: 14%">
|
| 815 |
+
<col style="width: 14%">
|
| 816 |
+
<col style="width: 14%">
|
| 817 |
+
</colgroup>
|
| 818 |
+
<thead>
|
| 819 |
+
<tr class="header">
|
| 820 |
+
<th>Optimization Level</th>
|
| 821 |
+
<th>Computation (GEMM)</th>
|
| 822 |
+
<th>Comm</th>
|
| 823 |
+
<th>Weight</th>
|
| 824 |
+
<th>Master Weight</th>
|
| 825 |
+
<th>Weight Gradient</th>
|
| 826 |
+
<th>Optimizer States</th>
|
| 827 |
+
</tr>
|
| 828 |
+
</thead>
|
| 829 |
+
<tbody>
|
| 830 |
+
<tr class="odd">
|
| 831 |
+
<td>FP16 AMP</td>
|
| 832 |
+
<td>FP16</td>
|
| 833 |
+
<td>FP32</td>
|
| 834 |
+
<td>FP32</td>
|
| 835 |
+
<td>N/A</td>
|
| 836 |
+
<td>FP32</td>
|
| 837 |
+
<td>FP32+FP32</td>
|
| 838 |
+
</tr>
|
| 839 |
+
<tr class="even">
|
| 840 |
+
<td>Nvidia TE</td>
|
| 841 |
+
<td>FP8</td>
|
| 842 |
+
<td>FP32</td>
|
| 843 |
+
<td>FP32</td>
|
| 844 |
+
<td>N/A</td>
|
| 845 |
+
<td>FP32</td>
|
| 846 |
+
<td>FP32+FP32</td>
|
| 847 |
+
</tr>
|
| 848 |
+
<tr class="odd">
|
| 849 |
+
<td>MS-AMP O1</td>
|
| 850 |
+
<td>FP8</td>
|
| 851 |
+
<td>FP8</td>
|
| 852 |
+
<td>FP16</td>
|
| 853 |
+
<td>N/A</td>
|
| 854 |
+
<td>FP8</td>
|
| 855 |
+
<td>FP32+FP32</td>
|
| 856 |
+
</tr>
|
| 857 |
+
<tr class="even">
|
| 858 |
+
<td>MS-AMP O2</td>
|
| 859 |
+
<td>FP8</td>
|
| 860 |
+
<td>FP8</td>
|
| 861 |
+
<td>FP16</td>
|
| 862 |
+
<td>N/A</td>
|
| 863 |
+
<td>FP8</td>
|
| 864 |
+
<td>FP8+FP16</td>
|
| 865 |
+
</tr>
|
| 866 |
+
<tr class="odd">
|
| 867 |
+
<td>MS-AMP O3</td>
|
| 868 |
+
<td>FP8</td>
|
| 869 |
+
<td>FP8</td>
|
| 870 |
+
<td>FP8</td>
|
| 871 |
+
<td>FP16</td>
|
| 872 |
+
<td>FP8</td>
|
| 873 |
+
<td>FP8+FP16</td>
|
| 874 |
+
</tr>
|
| 875 |
+
</tbody>
|
| 876 |
+
</table>
|
| 877 |
</div>
|
| 878 |
+
<aside class="notes">
|
| 879 |
+
<p>What is actually happening: * Linear Layers and other certain compatible layers are wrapped in a special version that allows for FP8 computation * The general forward pass is wrapped around BF16 * This means that the most memory saved is done during the gradients of the model, <em>not</em> the model itself. * With tools like <code>MS-AMP</code> we can convert more chunks into lower precision, but again like before stable training occurs when the models weights are in full precision and the backprop happens in full precision too.</p>
|
| 880 |
+
<style type="text/css">
|
| 881 |
+
span.MJX_Assistive_MathML {
|
| 882 |
+
position:absolute!important;
|
| 883 |
+
clip: rect(1px, 1px, 1px, 1px);
|
| 884 |
+
padding: 1px 0 0 0!important;
|
| 885 |
+
border: 0!important;
|
| 886 |
+
height: 1px!important;
|
| 887 |
+
width: 1px!important;
|
| 888 |
+
overflow: hidden!important;
|
| 889 |
+
display:block!important;
|
| 890 |
+
}</style></aside>
|
| 891 |
</section>
|
| 892 |
+
<section id="deepspeed-vs-fully-sharded-data-parallelism" class="slide level2">
|
| 893 |
+
<h2>DeepSpeed vs Fully Sharded Data Parallelism</h2>
|
| 894 |
+
<ul>
|
| 895 |
+
<li>Extremely similar, however mostly used different naming conventions for items and slight tweaks in the implementation</li>
|
| 896 |
+
</ul>
|
| 897 |
+
<div style="font-size: 50%;">
|
| 898 |
+
<table style="width:100%;">
|
| 899 |
+
<colgroup>
|
| 900 |
+
<col style="width: 16%">
|
| 901 |
+
<col style="width: 16%">
|
| 902 |
+
<col style="width: 16%">
|
| 903 |
+
<col style="width: 16%">
|
| 904 |
+
<col style="width: 16%">
|
| 905 |
+
<col style="width: 16%">
|
| 906 |
+
</colgroup>
|
| 907 |
+
<thead>
|
| 908 |
+
<tr class="header">
|
| 909 |
+
<th>Framework</th>
|
| 910 |
+
<th>Model Loading (<code>torch_dtype</code>)</th>
|
| 911 |
+
<th>Mixed Precision</th>
|
| 912 |
+
<th>Preparation (Local)</th>
|
| 913 |
+
<th>Training</th>
|
| 914 |
+
<th>Optimizer (Local)</th>
|
| 915 |
+
</tr>
|
| 916 |
+
</thead>
|
| 917 |
+
<tbody>
|
| 918 |
+
<tr class="odd">
|
| 919 |
+
<td>FSDP</td>
|
| 920 |
+
<td>bf16</td>
|
| 921 |
+
<td>default (none)</td>
|
| 922 |
+
<td>bf16</td>
|
| 923 |
+
<td>bf16</td>
|
| 924 |
+
<td>bf16</td>
|
| 925 |
+
</tr>
|
| 926 |
+
<tr class="even">
|
| 927 |
+
<td>FSDP</td>
|
| 928 |
+
<td>bf16</td>
|
| 929 |
+
<td>bf16</td>
|
| 930 |
+
<td>fp32</td>
|
| 931 |
+
<td>bf16</td>
|
| 932 |
+
<td>fp32</td>
|
| 933 |
+
</tr>
|
| 934 |
+
<tr class="odd">
|
| 935 |
+
<td>DeepSpeed</td>
|
| 936 |
+
<td>bf16</td>
|
| 937 |
+
<td>bf16</td>
|
| 938 |
+
<td>fp32</td>
|
| 939 |
+
<td>bf16</td>
|
| 940 |
+
<td>fp32</td>
|
| 941 |
+
</tr>
|
| 942 |
+
</tbody>
|
| 943 |
+
</table>
|
| 944 |
</div>
|
| 945 |
+
<p>To learn more, check out the <a href="https://huggingface.co/docs/accelerate/concept_guides/fsdp_and_deepspeed">documentation</a> or join my office hours</p>
|
| 946 |
</section>
|
| 947 |
+
<section id="key-takeaways" class="slide level2">
|
| 948 |
+
<h2>Key Takeaways:</h2>
|
| 949 |
+
<ul>
|
| 950 |
+
<li>You can scale out training with <code>accelerate</code>, FSDP, and DeepSpeed across multiple GPUs to train bigger models</li>
|
| 951 |
+
<li>Techniques like <code>FP8</code> can help speed up training some and reduce computational overhead</li>
|
| 952 |
+
<li>Comes at a cost of end-precision and locking model weights for futher fine-tunes if not careful</li>
|
| 953 |
+
</ul>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 954 |
</section>
|
| 955 |
<section id="some-handy-resources" class="slide level2">
|
| 956 |
<h2>Some Handy Resources</h2>
|
|
|
|
| 962 |
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/big_modeling">Big Model Inference tutorial</a></li>
|
| 963 |
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/deepspeed">DeepSpeed and 🤗 Accelerate</a></li>
|
| 964 |
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/fsdp">Fully Sharded Data Parallelism and 🤗 Accelerate</a></li>
|
| 965 |
+
<li><a href="https://huggingface.co/docs/accelerate/concept_guides/fsdp_and_deepspeed">FSDP vs DeepSpeed In-Depth</a></li>
|
| 966 |
</ul>
|
| 967 |
<div class="footer footer-default">
|
| 968 |
|
| 969 |
</div>
|
| 970 |
</section></section>
|
|
|
|
| 971 |
</div>
|
| 972 |
</div>
|
| 973 |
|
| 974 |
<script>window.backupDefine = window.define; window.define = undefined;</script>
|
| 975 |
+
<script src="llm_conf_files/libs/revealjs/dist/reveal.js"></script>
|
| 976 |
<!-- reveal.js plugins -->
|
| 977 |
+
<script src="llm_conf_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js"></script>
|
| 978 |
+
<script src="llm_conf_files/libs/revealjs/plugin/pdf-export/pdfexport.js"></script>
|
| 979 |
+
<script src="llm_conf_files/libs/revealjs/plugin/reveal-menu/menu.js"></script>
|
| 980 |
+
<script src="llm_conf_files/libs/revealjs/plugin/reveal-menu/quarto-menu.js"></script>
|
| 981 |
+
<script src="llm_conf_files/libs/revealjs/plugin/quarto-support/support.js"></script>
|
| 982 |
|
| 983 |
|
| 984 |
+
<script src="llm_conf_files/libs/revealjs/plugin/notes/notes.js"></script>
|
| 985 |
+
<script src="llm_conf_files/libs/revealjs/plugin/search/search.js"></script>
|
| 986 |
+
<script src="llm_conf_files/libs/revealjs/plugin/zoom/zoom.js"></script>
|
| 987 |
+
<script src="llm_conf_files/libs/revealjs/plugin/math/math.js"></script>
|
| 988 |
<script>window.define = window.backupDefine; window.backupDefine = undefined;</script>
|
| 989 |
|
| 990 |
<script>
|
|
|
|
| 994 |
Reveal.initialize({
|
| 995 |
'controlsAuto': true,
|
| 996 |
'previewLinksAuto': false,
|
|
|
|
| 997 |
'pdfSeparateFragments': false,
|
| 998 |
'autoAnimateEasing': "ease",
|
| 999 |
'autoAnimateDuration': 1,
|
| 1000 |
'autoAnimateUnmatched': true,
|
| 1001 |
+
'menu': {"side":"left","useTextContentForMissingTitles":true,"markers":false,"loadIcons":false,"custom":[{"title":"Tools","icon":"<i class=\"fas fa-gear\"></i>","content":"<ul class=\"slide-menu-items\">\n<li class=\"slide-tool-item active\" data-item=\"0\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.fullscreen(event)\"><kbd>f</kbd> Fullscreen</a></li>\n<li class=\"slide-tool-item\" data-item=\"1\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.speakerMode(event)\"><kbd>s</kbd> Speaker View</a></li>\n<li class=\"slide-tool-item\" data-item=\"2\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>o</kbd> Slide Overview</a></li>\n<li class=\"slide-tool-item\" data-item=\"3\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.togglePdfExport(event)\"><kbd>e</kbd> PDF Export Mode</a></li>\n<li class=\"slide-tool-item\" data-item=\"4\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.keyboardHelp(event)\"><kbd>?</kbd> Keyboard Help</a></li>\n</ul>"}],"openButton":true},
|
| 1002 |
'smaller': false,
|
| 1003 |
|
| 1004 |
// Display controls in the bottom right corner
|
|
|
|
| 1202 |
tabsets.forEach(function(tabset) {
|
| 1203 |
const tabby = new Tabby('#' + tabset.id);
|
| 1204 |
});
|
| 1205 |
+
const isCodeAnnotation = (el) => {
|
| 1206 |
+
for (const clz of el.classList) {
|
| 1207 |
+
if (clz.startsWith('code-annotation-')) {
|
| 1208 |
+
return true;
|
| 1209 |
+
}
|
| 1210 |
+
}
|
| 1211 |
+
return false;
|
| 1212 |
+
}
|
| 1213 |
const clipboard = new window.ClipboardJS('.code-copy-button', {
|
| 1214 |
+
text: function(trigger) {
|
| 1215 |
+
const codeEl = trigger.previousElementSibling.cloneNode(true);
|
| 1216 |
+
for (const childEl of codeEl.children) {
|
| 1217 |
+
if (isCodeAnnotation(childEl)) {
|
| 1218 |
+
childEl.remove();
|
| 1219 |
+
}
|
| 1220 |
+
}
|
| 1221 |
+
return codeEl.innerText;
|
| 1222 |
}
|
| 1223 |
});
|
| 1224 |
clipboard.on('success', function(e) {
|
|
|
|
| 1254 |
// clear code selection
|
| 1255 |
e.clearSelection();
|
| 1256 |
});
|
| 1257 |
+
function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
|
| 1258 |
const config = {
|
| 1259 |
allowHTML: true,
|
|
|
|
| 1260 |
maxWidth: 500,
|
| 1261 |
delay: 100,
|
| 1262 |
arrow: false,
|
|
|
|
| 1265 |
},
|
| 1266 |
interactive: true,
|
| 1267 |
interactiveBorder: 10,
|
| 1268 |
+
theme: 'light-border',
|
| 1269 |
+
placement: 'bottom-start',
|
| 1270 |
};
|
| 1271 |
+
if (contentFn) {
|
| 1272 |
+
config.content = contentFn;
|
| 1273 |
+
}
|
| 1274 |
+
if (onTriggerFn) {
|
| 1275 |
+
config.onTrigger = onTriggerFn;
|
| 1276 |
+
}
|
| 1277 |
+
if (onUntriggerFn) {
|
| 1278 |
+
config.onUntrigger = onUntriggerFn;
|
| 1279 |
+
}
|
| 1280 |
config['offset'] = [0,0];
|
| 1281 |
config['maxWidth'] = 700;
|
| 1282 |
window.tippy(el, config);
|
llm_conf.html
DELETED
|
@@ -1,1337 +0,0 @@
|
|
| 1 |
-
<!DOCTYPE html>
|
| 2 |
-
<html lang="en"><head>
|
| 3 |
-
<script src="llm_conf_files/libs/clipboard/clipboard.min.js"></script>
|
| 4 |
-
<script src="llm_conf_files/libs/quarto-html/tabby.min.js"></script>
|
| 5 |
-
<script src="llm_conf_files/libs/quarto-html/popper.min.js"></script>
|
| 6 |
-
<script src="llm_conf_files/libs/quarto-html/tippy.umd.min.js"></script>
|
| 7 |
-
<link href="llm_conf_files/libs/quarto-html/tippy.css" rel="stylesheet">
|
| 8 |
-
<link href="llm_conf_files/libs/quarto-html/light-border.css" rel="stylesheet">
|
| 9 |
-
<link href="llm_conf_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light">
|
| 10 |
-
<link href="llm_conf_files/libs/quarto-html/quarto-syntax-highlighting-dark.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8">
|
| 11 |
-
<meta name="generator" content="quarto-99.9.9">
|
| 12 |
-
|
| 13 |
-
<title>Scaling Model Training with More Compute, How Do They Do It?</title>
|
| 14 |
-
<meta name="apple-mobile-web-app-capable" content="yes">
|
| 15 |
-
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
|
| 16 |
-
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
|
| 17 |
-
<link rel="stylesheet" href="llm_conf_files/libs/revealjs/dist/reset.css">
|
| 18 |
-
<link rel="stylesheet" href="llm_conf_files/libs/revealjs/dist/reveal.css">
|
| 19 |
-
<style>
|
| 20 |
-
code{white-space: pre-wrap;}
|
| 21 |
-
span.smallcaps{font-variant: small-caps;}
|
| 22 |
-
div.columns{display: flex; gap: min(4vw, 1.5em);}
|
| 23 |
-
div.column{flex: auto; overflow-x: auto;}
|
| 24 |
-
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
| 25 |
-
ul.task-list{list-style: none;}
|
| 26 |
-
ul.task-list li input[type="checkbox"] {
|
| 27 |
-
width: 0.8em;
|
| 28 |
-
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
|
| 29 |
-
vertical-align: middle;
|
| 30 |
-
}
|
| 31 |
-
/* CSS for syntax highlighting */
|
| 32 |
-
pre > code.sourceCode { white-space: pre; position: relative; }
|
| 33 |
-
pre > code.sourceCode > span { line-height: 1.25; }
|
| 34 |
-
pre > code.sourceCode > span:empty { height: 1.2em; }
|
| 35 |
-
.sourceCode { overflow: visible; }
|
| 36 |
-
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
| 37 |
-
div.sourceCode { margin: 1em 0; }
|
| 38 |
-
pre.sourceCode { margin: 0; }
|
| 39 |
-
@media screen {
|
| 40 |
-
div.sourceCode { overflow: auto; }
|
| 41 |
-
}
|
| 42 |
-
@media print {
|
| 43 |
-
pre > code.sourceCode { white-space: pre-wrap; }
|
| 44 |
-
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
|
| 45 |
-
}
|
| 46 |
-
pre.numberSource code
|
| 47 |
-
{ counter-reset: source-line 0; }
|
| 48 |
-
pre.numberSource code > span
|
| 49 |
-
{ position: relative; left: -4em; counter-increment: source-line; }
|
| 50 |
-
pre.numberSource code > span > a:first-child::before
|
| 51 |
-
{ content: counter(source-line);
|
| 52 |
-
position: relative; left: -1em; text-align: right; vertical-align: baseline;
|
| 53 |
-
border: none; display: inline-block;
|
| 54 |
-
-webkit-touch-callout: none; -webkit-user-select: none;
|
| 55 |
-
-khtml-user-select: none; -moz-user-select: none;
|
| 56 |
-
-ms-user-select: none; user-select: none;
|
| 57 |
-
padding: 0 4px; width: 4em;
|
| 58 |
-
}
|
| 59 |
-
pre.numberSource { margin-left: 3em; padding-left: 4px; }
|
| 60 |
-
div.sourceCode
|
| 61 |
-
{ color: #f8f8f2; }
|
| 62 |
-
@media screen {
|
| 63 |
-
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
|
| 64 |
-
}
|
| 65 |
-
code span { color: #f8f8f2; } /* Normal */
|
| 66 |
-
code span.al { color: #f07178; background-color: #2a0f15; font-weight: bold; } /* Alert */
|
| 67 |
-
code span.an { color: #d4d0ab; } /* Annotation */
|
| 68 |
-
code span.at { color: #00e0e0; } /* Attribute */
|
| 69 |
-
code span.bn { color: #d4d0ab; } /* BaseN */
|
| 70 |
-
code span.bu { color: #abe338; } /* BuiltIn */
|
| 71 |
-
code span.cf { color: #ffa07a; font-weight: bold; } /* ControlFlow */
|
| 72 |
-
code span.ch { color: #abe338; } /* Char */
|
| 73 |
-
code span.cn { color: #ffd700; } /* Constant */
|
| 74 |
-
code span.co { color: #f8f8f2; font-style: italic; } /* Comment */
|
| 75 |
-
code span.cv { color: #ffd700; } /* CommentVar */
|
| 76 |
-
code span.do { color: #f8f8f2; } /* Documentation */
|
| 77 |
-
code span.dt { color: #ffa07a; } /* DataType */
|
| 78 |
-
code span.dv { color: #d4d0ab; } /* DecVal */
|
| 79 |
-
code span.er { color: #f07178; text-decoration: underline; } /* Error */
|
| 80 |
-
code span.ex { color: #00e0e0; font-weight: bold; } /* Extension */
|
| 81 |
-
code span.fl { color: #d4d0ab; } /* Float */
|
| 82 |
-
code span.fu { color: #ffa07a; } /* Function */
|
| 83 |
-
code span.im { color: #abe338; } /* Import */
|
| 84 |
-
code span.in { color: #d4d0ab; } /* Information */
|
| 85 |
-
code span.kw { color: #ffa07a; font-weight: bold; } /* Keyword */
|
| 86 |
-
code span.op { color: #ffa07a; } /* Operator */
|
| 87 |
-
code span.ot { color: #00e0e0; } /* Other */
|
| 88 |
-
code span.pp { color: #dcc6e0; } /* Preprocessor */
|
| 89 |
-
code span.re { color: #00e0e0; background-color: #f8f8f2; } /* RegionMarker */
|
| 90 |
-
code span.sc { color: #abe338; } /* SpecialChar */
|
| 91 |
-
code span.ss { color: #abe338; } /* SpecialString */
|
| 92 |
-
code span.st { color: #abe338; } /* String */
|
| 93 |
-
code span.va { color: #00e0e0; } /* Variable */
|
| 94 |
-
code span.vs { color: #abe338; } /* VerbatimString */
|
| 95 |
-
code span.wa { color: #dcc6e0; } /* Warning */
|
| 96 |
-
</style>
|
| 97 |
-
<link rel="stylesheet" href="llm_conf_files/libs/revealjs/dist/theme/quarto.css">
|
| 98 |
-
<link href="llm_conf_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.css" rel="stylesheet">
|
| 99 |
-
<link href="llm_conf_files/libs/revealjs/plugin/reveal-menu/menu.css" rel="stylesheet">
|
| 100 |
-
<link href="llm_conf_files/libs/revealjs/plugin/reveal-menu/quarto-menu.css" rel="stylesheet">
|
| 101 |
-
<link href="llm_conf_files/libs/revealjs/plugin/quarto-support/footer.css" rel="stylesheet">
|
| 102 |
-
<style type="text/css">
|
| 103 |
-
|
| 104 |
-
.callout {
|
| 105 |
-
margin-top: 1em;
|
| 106 |
-
margin-bottom: 1em;
|
| 107 |
-
border-radius: .25rem;
|
| 108 |
-
}
|
| 109 |
-
|
| 110 |
-
.callout.callout-style-simple {
|
| 111 |
-
padding: 0em 0.5em;
|
| 112 |
-
border-left: solid #acacac .3rem;
|
| 113 |
-
border-right: solid 1px silver;
|
| 114 |
-
border-top: solid 1px silver;
|
| 115 |
-
border-bottom: solid 1px silver;
|
| 116 |
-
display: flex;
|
| 117 |
-
}
|
| 118 |
-
|
| 119 |
-
.callout.callout-style-default {
|
| 120 |
-
border-left: solid #acacac .3rem;
|
| 121 |
-
border-right: solid 1px silver;
|
| 122 |
-
border-top: solid 1px silver;
|
| 123 |
-
border-bottom: solid 1px silver;
|
| 124 |
-
}
|
| 125 |
-
|
| 126 |
-
.callout .callout-body-container {
|
| 127 |
-
flex-grow: 1;
|
| 128 |
-
}
|
| 129 |
-
|
| 130 |
-
.callout.callout-style-simple .callout-body {
|
| 131 |
-
font-size: 1rem;
|
| 132 |
-
font-weight: 400;
|
| 133 |
-
}
|
| 134 |
-
|
| 135 |
-
.callout.callout-style-default .callout-body {
|
| 136 |
-
font-size: 0.9rem;
|
| 137 |
-
font-weight: 400;
|
| 138 |
-
}
|
| 139 |
-
|
| 140 |
-
.callout.callout-titled.callout-style-simple .callout-body {
|
| 141 |
-
margin-top: 0.2em;
|
| 142 |
-
}
|
| 143 |
-
|
| 144 |
-
.callout:not(.callout-titled) .callout-body {
|
| 145 |
-
display: flex;
|
| 146 |
-
}
|
| 147 |
-
|
| 148 |
-
.callout:not(.no-icon).callout-titled.callout-style-simple .callout-content {
|
| 149 |
-
padding-left: 1.6em;
|
| 150 |
-
}
|
| 151 |
-
|
| 152 |
-
.callout.callout-titled .callout-header {
|
| 153 |
-
padding-top: 0.2em;
|
| 154 |
-
margin-bottom: -0.2em;
|
| 155 |
-
}
|
| 156 |
-
|
| 157 |
-
.callout.callout-titled .callout-title p {
|
| 158 |
-
margin-top: 0.5em;
|
| 159 |
-
margin-bottom: 0.5em;
|
| 160 |
-
}
|
| 161 |
-
|
| 162 |
-
.callout.callout-titled.callout-style-simple .callout-content p {
|
| 163 |
-
margin-top: 0;
|
| 164 |
-
}
|
| 165 |
-
|
| 166 |
-
.callout.callout-titled.callout-style-default .callout-content p {
|
| 167 |
-
margin-top: 0.7em;
|
| 168 |
-
}
|
| 169 |
-
|
| 170 |
-
.callout.callout-style-simple div.callout-title {
|
| 171 |
-
border-bottom: none;
|
| 172 |
-
font-size: .9rem;
|
| 173 |
-
font-weight: 600;
|
| 174 |
-
opacity: 75%;
|
| 175 |
-
}
|
| 176 |
-
|
| 177 |
-
.callout.callout-style-default div.callout-title {
|
| 178 |
-
border-bottom: none;
|
| 179 |
-
font-weight: 600;
|
| 180 |
-
opacity: 85%;
|
| 181 |
-
font-size: 0.9rem;
|
| 182 |
-
padding-left: 0.5em;
|
| 183 |
-
padding-right: 0.5em;
|
| 184 |
-
}
|
| 185 |
-
|
| 186 |
-
.callout.callout-style-default div.callout-content {
|
| 187 |
-
padding-left: 0.5em;
|
| 188 |
-
padding-right: 0.5em;
|
| 189 |
-
}
|
| 190 |
-
|
| 191 |
-
.callout.callout-style-simple .callout-icon::before {
|
| 192 |
-
height: 1rem;
|
| 193 |
-
width: 1rem;
|
| 194 |
-
display: inline-block;
|
| 195 |
-
content: "";
|
| 196 |
-
background-repeat: no-repeat;
|
| 197 |
-
background-size: 1rem 1rem;
|
| 198 |
-
}
|
| 199 |
-
|
| 200 |
-
.callout.callout-style-default .callout-icon::before {
|
| 201 |
-
height: 0.9rem;
|
| 202 |
-
width: 0.9rem;
|
| 203 |
-
display: inline-block;
|
| 204 |
-
content: "";
|
| 205 |
-
background-repeat: no-repeat;
|
| 206 |
-
background-size: 0.9rem 0.9rem;
|
| 207 |
-
}
|
| 208 |
-
|
| 209 |
-
.callout-title {
|
| 210 |
-
display: flex
|
| 211 |
-
}
|
| 212 |
-
|
| 213 |
-
.callout-icon::before {
|
| 214 |
-
margin-top: 1rem;
|
| 215 |
-
padding-right: .5rem;
|
| 216 |
-
}
|
| 217 |
-
|
| 218 |
-
.callout.no-icon::before {
|
| 219 |
-
display: none !important;
|
| 220 |
-
}
|
| 221 |
-
|
| 222 |
-
.callout.callout-titled .callout-body > .callout-content > :last-child {
|
| 223 |
-
padding-bottom: 0.5rem;
|
| 224 |
-
margin-bottom: 0;
|
| 225 |
-
}
|
| 226 |
-
|
| 227 |
-
.callout.callout-titled .callout-icon::before {
|
| 228 |
-
margin-top: .5rem;
|
| 229 |
-
padding-right: .5rem;
|
| 230 |
-
}
|
| 231 |
-
|
| 232 |
-
.callout:not(.callout-titled) .callout-icon::before {
|
| 233 |
-
margin-top: 1rem;
|
| 234 |
-
padding-right: .5rem;
|
| 235 |
-
}
|
| 236 |
-
|
| 237 |
-
/* Callout Types */
|
| 238 |
-
|
| 239 |
-
div.callout-note {
|
| 240 |
-
border-left-color: #4582ec !important;
|
| 241 |
-
}
|
| 242 |
-
|
| 243 |
-
div.callout-note .callout-icon::before {
|
| 244 |
-
background-image: url('');
|
| 245 |
-
}
|
| 246 |
-
|
| 247 |
-
div.callout-note.callout-style-default .callout-title {
|
| 248 |
-
background-color: #dae6fb
|
| 249 |
-
}
|
| 250 |
-
|
| 251 |
-
div.callout-important {
|
| 252 |
-
border-left-color: #d9534f !important;
|
| 253 |
-
}
|
| 254 |
-
|
| 255 |
-
div.callout-important .callout-icon::before {
|
| 256 |
-
background-image: url('');
|
| 257 |
-
}
|
| 258 |
-
|
| 259 |
-
div.callout-important.callout-style-default .callout-title {
|
| 260 |
-
background-color: #f7dddc
|
| 261 |
-
}
|
| 262 |
-
|
| 263 |
-
div.callout-warning {
|
| 264 |
-
border-left-color: #f0ad4e !important;
|
| 265 |
-
}
|
| 266 |
-
|
| 267 |
-
div.callout-warning .callout-icon::before {
|
| 268 |
-
background-image: url('');
|
| 269 |
-
}
|
| 270 |
-
|
| 271 |
-
div.callout-warning.callout-style-default .callout-title {
|
| 272 |
-
background-color: #fcefdc
|
| 273 |
-
}
|
| 274 |
-
|
| 275 |
-
div.callout-tip {
|
| 276 |
-
border-left-color: #02b875 !important;
|
| 277 |
-
}
|
| 278 |
-
|
| 279 |
-
div.callout-tip .callout-icon::before {
|
| 280 |
-
background-image: url('');
|
| 281 |
-
}
|
| 282 |
-
|
| 283 |
-
div.callout-tip.callout-style-default .callout-title {
|
| 284 |
-
background-color: #ccf1e3
|
| 285 |
-
}
|
| 286 |
-
|
| 287 |
-
div.callout-caution {
|
| 288 |
-
border-left-color: #fd7e14 !important;
|
| 289 |
-
}
|
| 290 |
-
|
| 291 |
-
div.callout-caution .callout-icon::before {
|
| 292 |
-
background-image: url('');
|
| 293 |
-
}
|
| 294 |
-
|
| 295 |
-
div.callout-caution.callout-style-default .callout-title {
|
| 296 |
-
background-color: #ffe5d0
|
| 297 |
-
}
|
| 298 |
-
|
| 299 |
-
</style>
|
| 300 |
-
<style type="text/css">
|
| 301 |
-
.reveal div.sourceCode {
|
| 302 |
-
margin: 0;
|
| 303 |
-
overflow: auto;
|
| 304 |
-
}
|
| 305 |
-
.reveal div.hanging-indent {
|
| 306 |
-
margin-left: 1em;
|
| 307 |
-
text-indent: -1em;
|
| 308 |
-
}
|
| 309 |
-
.reveal .slide:not(.center) {
|
| 310 |
-
height: 100%;
|
| 311 |
-
}
|
| 312 |
-
.reveal .slide.scrollable {
|
| 313 |
-
overflow-y: auto;
|
| 314 |
-
}
|
| 315 |
-
.reveal .footnotes {
|
| 316 |
-
height: 100%;
|
| 317 |
-
overflow-y: auto;
|
| 318 |
-
}
|
| 319 |
-
.reveal .slide .absolute {
|
| 320 |
-
position: absolute;
|
| 321 |
-
display: block;
|
| 322 |
-
}
|
| 323 |
-
.reveal .footnotes ol {
|
| 324 |
-
counter-reset: ol;
|
| 325 |
-
list-style-type: none;
|
| 326 |
-
margin-left: 0;
|
| 327 |
-
}
|
| 328 |
-
.reveal .footnotes ol li:before {
|
| 329 |
-
counter-increment: ol;
|
| 330 |
-
content: counter(ol) ". ";
|
| 331 |
-
}
|
| 332 |
-
.reveal .footnotes ol li > p:first-child {
|
| 333 |
-
display: inline-block;
|
| 334 |
-
}
|
| 335 |
-
.reveal .slide ul,
|
| 336 |
-
.reveal .slide ol {
|
| 337 |
-
margin-bottom: 0.5em;
|
| 338 |
-
}
|
| 339 |
-
.reveal .slide ul li,
|
| 340 |
-
.reveal .slide ol li {
|
| 341 |
-
margin-top: 0.4em;
|
| 342 |
-
margin-bottom: 0.2em;
|
| 343 |
-
}
|
| 344 |
-
.reveal .slide ul[role="tablist"] li {
|
| 345 |
-
margin-bottom: 0;
|
| 346 |
-
}
|
| 347 |
-
.reveal .slide ul li > *:first-child,
|
| 348 |
-
.reveal .slide ol li > *:first-child {
|
| 349 |
-
margin-block-start: 0;
|
| 350 |
-
}
|
| 351 |
-
.reveal .slide ul li > *:last-child,
|
| 352 |
-
.reveal .slide ol li > *:last-child {
|
| 353 |
-
margin-block-end: 0;
|
| 354 |
-
}
|
| 355 |
-
.reveal .slide .columns:nth-child(3) {
|
| 356 |
-
margin-block-start: 0.8em;
|
| 357 |
-
}
|
| 358 |
-
.reveal blockquote {
|
| 359 |
-
box-shadow: none;
|
| 360 |
-
}
|
| 361 |
-
.reveal .tippy-content>* {
|
| 362 |
-
margin-top: 0.2em;
|
| 363 |
-
margin-bottom: 0.7em;
|
| 364 |
-
}
|
| 365 |
-
.reveal .tippy-content>*:last-child {
|
| 366 |
-
margin-bottom: 0.2em;
|
| 367 |
-
}
|
| 368 |
-
.reveal .slide > img.stretch.quarto-figure-center,
|
| 369 |
-
.reveal .slide > img.r-stretch.quarto-figure-center {
|
| 370 |
-
display: block;
|
| 371 |
-
margin-left: auto;
|
| 372 |
-
margin-right: auto;
|
| 373 |
-
}
|
| 374 |
-
.reveal .slide > img.stretch.quarto-figure-left,
|
| 375 |
-
.reveal .slide > img.r-stretch.quarto-figure-left {
|
| 376 |
-
display: block;
|
| 377 |
-
margin-left: 0;
|
| 378 |
-
margin-right: auto;
|
| 379 |
-
}
|
| 380 |
-
.reveal .slide > img.stretch.quarto-figure-right,
|
| 381 |
-
.reveal .slide > img.r-stretch.quarto-figure-right {
|
| 382 |
-
display: block;
|
| 383 |
-
margin-left: auto;
|
| 384 |
-
margin-right: 0;
|
| 385 |
-
}
|
| 386 |
-
</style>
|
| 387 |
-
<script src="llm_conf_files/libs/quarto-diagram/mermaid.min.js"></script>
|
| 388 |
-
<script src="llm_conf_files/libs/quarto-diagram/mermaid-init.js"></script>
|
| 389 |
-
<link href="llm_conf_files/libs/quarto-diagram/mermaid.css" rel="stylesheet">
|
| 390 |
-
</head>
|
| 391 |
-
<body class="quarto-dark">
|
| 392 |
-
<div class="reveal">
|
| 393 |
-
<div class="slides">
|
| 394 |
-
|
| 395 |
-
<section id="title-slide" class="quarto-title-block center">
|
| 396 |
-
<h1 class="title">Scaling Model Training with More Compute, How Do They Do It?</h1>
|
| 397 |
-
|
| 398 |
-
<div class="quarto-title-authors">
|
| 399 |
-
</div>
|
| 400 |
-
|
| 401 |
-
</section>
|
| 402 |
-
<section id="who-am-i" class="slide level2">
|
| 403 |
-
<h2>Who am I?</h2>
|
| 404 |
-
<ul>
|
| 405 |
-
<li>Zachary Mueller</li>
|
| 406 |
-
<li>Technical Lead for the 🤗 Accelerate project</li>
|
| 407 |
-
<li>API design geek</li>
|
| 408 |
-
</ul>
|
| 409 |
-
</section>
|
| 410 |
-
<section id="understanding-gpu-usage" class="slide level2">
|
| 411 |
-
<h2>Understanding GPU Usage</h2>
|
| 412 |
-
<ul>
|
| 413 |
-
<li>We can somewhat estimate the memory usage in vanilla full-fine-tuning of models</li>
|
| 414 |
-
<li>Requires certain assumptions (that I’ll be covering):
|
| 415 |
-
<ul>
|
| 416 |
-
<li>Adam optimizer</li>
|
| 417 |
-
<li>Batch size of 1</li>
|
| 418 |
-
</ul></li>
|
| 419 |
-
</ul>
|
| 420 |
-
</section>
|
| 421 |
-
<section id="understanding-gpu-usage-1" class="slide level2">
|
| 422 |
-
<h2>Understanding GPU Usage</h2>
|
| 423 |
-
<p>General estimate (<code>bert-base-cased</code>, 108M params):</p>
|
| 424 |
-
<ul>
|
| 425 |
-
<li>Each parameter is 4 bytes</li>
|
| 426 |
-
<li>Backward ~= 2x the model size</li>
|
| 427 |
-
<li>The optimizer step ~= 4x the model size (1x model, 1x gradients, 2x optimizer):</li>
|
| 428 |
-
</ul>
|
| 429 |
-
<div style="font-size: 50%;">
|
| 430 |
-
<table>
|
| 431 |
-
<thead>
|
| 432 |
-
<tr class="header">
|
| 433 |
-
<th>dtype</th>
|
| 434 |
-
<th style="text-align: left;">Model</th>
|
| 435 |
-
<th style="text-align: center;">Gradients</th>
|
| 436 |
-
<th style="text-align: center;">Backward pass</th>
|
| 437 |
-
<th style="text-align: center;">Optimizer step</th>
|
| 438 |
-
<th style="text-align: center;">Highest</th>
|
| 439 |
-
</tr>
|
| 440 |
-
</thead>
|
| 441 |
-
<tbody>
|
| 442 |
-
<tr class="odd">
|
| 443 |
-
<td>float32</td>
|
| 444 |
-
<td style="text-align: left;">413.18 MB</td>
|
| 445 |
-
<td style="text-align: center;">413.18 MB</td>
|
| 446 |
-
<td style="text-align: center;">826.36 MB</td>
|
| 447 |
-
<td style="text-align: center;">1.61 GB</td>
|
| 448 |
-
<td style="text-align: center;">1.61 GB</td>
|
| 449 |
-
</tr>
|
| 450 |
-
<tr class="even">
|
| 451 |
-
<td>float16</td>
|
| 452 |
-
<td style="text-align: left;">413.18 MB*</td>
|
| 453 |
-
<td style="text-align: center;">619.77 MB</td>
|
| 454 |
-
<td style="text-align: center;">826.36 MB</td>
|
| 455 |
-
<td style="text-align: center;">826.36 MB</td>
|
| 456 |
-
<td style="text-align: center;">826.36 MB</td>
|
| 457 |
-
</tr>
|
| 458 |
-
</tbody>
|
| 459 |
-
</table>
|
| 460 |
-
<p>*All estimations were based off the <a href="https://huggingface.co/spaces/hf-accelerate/model-memory-usage">Model Estimator Tool</a></p>
|
| 461 |
-
</div>
|
| 462 |
-
</section>
|
| 463 |
-
<section id="understanding-gpu-usage-2" class="slide level2">
|
| 464 |
-
<h2>Understanding GPU Usage</h2>
|
| 465 |
-
<p>This works fine for small models, we have cards with anywhere from 12-24GB of GPU memory (on the GPU-poor side).</p>
|
| 466 |
-
<p>But what happens as we scale?</p>
|
| 467 |
-
<p>Here’s <code>llama-3-8B</code> (8.03B parameters)</p>
|
| 468 |
-
<div style="font-size: 50%;">
|
| 469 |
-
<table>
|
| 470 |
-
<thead>
|
| 471 |
-
<tr class="header">
|
| 472 |
-
<th>dtype</th>
|
| 473 |
-
<th style="text-align: left;">Model</th>
|
| 474 |
-
<th style="text-align: center;">Gradients</th>
|
| 475 |
-
<th style="text-align: center;">Backward pass</th>
|
| 476 |
-
<th style="text-align: center;">Optimizer step</th>
|
| 477 |
-
<th style="text-align: center;">Highest</th>
|
| 478 |
-
</tr>
|
| 479 |
-
</thead>
|
| 480 |
-
<tbody>
|
| 481 |
-
<tr class="odd">
|
| 482 |
-
<td>float32</td>
|
| 483 |
-
<td style="text-align: left;">28.21 GB</td>
|
| 484 |
-
<td style="text-align: center;">28.21 GB</td>
|
| 485 |
-
<td style="text-align: center;">56.43 GB</td>
|
| 486 |
-
<td style="text-align: center;">112.84 GB</td>
|
| 487 |
-
<td style="text-align: center;">112.84 GB</td>
|
| 488 |
-
</tr>
|
| 489 |
-
<tr class="even">
|
| 490 |
-
<td>float16</td>
|
| 491 |
-
<td style="text-align: left;">28.21 GB*</td>
|
| 492 |
-
<td style="text-align: center;">42.32 GB</td>
|
| 493 |
-
<td style="text-align: center;">56.43 GB</td>
|
| 494 |
-
<td style="text-align: center;">56.43 GB</td>
|
| 495 |
-
<td style="text-align: center;">56.43 GB</td>
|
| 496 |
-
</tr>
|
| 497 |
-
</tbody>
|
| 498 |
-
</table>
|
| 499 |
-
</div>
|
| 500 |
-
<p>Well, <em>I</em> don’t have 56GB of GPU memory in a single card, let alone 112GB.</p>
|
| 501 |
-
<p>What can we do?</p>
|
| 502 |
-
</section>
|
| 503 |
-
<section>
|
| 504 |
-
<section id="distributed-training" class="title-slide slide level1 center">
|
| 505 |
-
<h1>Distributed Training</h1>
|
| 506 |
-
|
| 507 |
-
</section>
|
| 508 |
-
<section id="kinds-of-training" class="slide level2">
|
| 509 |
-
<h2>Kinds of Training</h2>
|
| 510 |
-
<ul>
|
| 511 |
-
<li>Single GPU:
|
| 512 |
-
<ul>
|
| 513 |
-
<li>No distributed techniques at play</li>
|
| 514 |
-
</ul></li>
|
| 515 |
-
<li>DDP:
|
| 516 |
-
<ul>
|
| 517 |
-
<li>A full copy of the model exists on each device, but data is chunked between each GPU</li>
|
| 518 |
-
</ul></li>
|
| 519 |
-
<li>FSDP & DeepSpeed:
|
| 520 |
-
<ul>
|
| 521 |
-
<li>Split chunks of the model and optimizer states across GPUs, allowing for training bigger models on smaller (multiple) GPUs</li>
|
| 522 |
-
</ul></li>
|
| 523 |
-
</ul>
|
| 524 |
-
</section></section>
|
| 525 |
-
<section>
|
| 526 |
-
<section id="fully-sharded-data-parallelism" class="title-slide slide level1 center">
|
| 527 |
-
<h1>Fully Sharded Data Parallelism</h1>
|
| 528 |
-
|
| 529 |
-
</section>
|
| 530 |
-
<section id="fully-sharded-data-parallelism-1" class="slide level2">
|
| 531 |
-
<h2>Fully Sharded Data Parallelism</h2>
|
| 532 |
-
|
| 533 |
-
<img data-src="fsdp.png" id="fig-539a35d47e664c97a50115a146a7f1bd-1" class="r-stretch quarto-figure-center"><aside class="notes">
|
| 534 |
-
<ul>
|
| 535 |
-
<li>Take the model and split it across <code>n</code> GPUs</li>
|
| 536 |
-
<li>Each GPU computes the shard’s gradients</li>
|
| 537 |
-
<li>At the end, all gradients are synchronized and the final full model gradient is calculated</li>
|
| 538 |
-
<li>The backward pass can then be performed</li>
|
| 539 |
-
</ul>
|
| 540 |
-
<style type="text/css">
|
| 541 |
-
span.MJX_Assistive_MathML {
|
| 542 |
-
position:absolute!important;
|
| 543 |
-
clip: rect(1px, 1px, 1px, 1px);
|
| 544 |
-
padding: 1px 0 0 0!important;
|
| 545 |
-
border: 0!important;
|
| 546 |
-
height: 1px!important;
|
| 547 |
-
width: 1px!important;
|
| 548 |
-
overflow: hidden!important;
|
| 549 |
-
display:block!important;
|
| 550 |
-
}</style></aside>
|
| 551 |
-
</section>
|
| 552 |
-
<section id="fsdp-getting-parameter-specific" class="slide level2">
|
| 553 |
-
<h2>FSDP: Getting parameter specific</h2>
|
| 554 |
-
<ul>
|
| 555 |
-
<li>Different parameters can dicatate how much memory is needed for total GPU training across multiple GPUs</li>
|
| 556 |
-
<li>These include how model weights are sharded, gradients, and more.</li>
|
| 557 |
-
<li>I’ll cover some important ones I needed when doing a Full-Fine-Tune of Llama-3-8B <em>without PEFT</em> on 2x4090’s</li>
|
| 558 |
-
</ul>
|
| 559 |
-
</section>
|
| 560 |
-
<section id="sharding_strategy" class="slide level2">
|
| 561 |
-
<h2><code>sharding_strategy</code></h2>
|
| 562 |
-
<ul>
|
| 563 |
-
<li>Dictates the level of divving resources to perform
|
| 564 |
-
<ul>
|
| 565 |
-
<li><code>FULL_SHARD</code>: Includes optimizer states, gradients, and parameters</li>
|
| 566 |
-
<li><code>SHARD_GRAD_OP</code>: Includes optimizer states and gradients</li>
|
| 567 |
-
<li><code>NO_SHARD</code>: Normal DDP</li>
|
| 568 |
-
<li><code>HYBRID_SHARD</code>: Includes optimizer states, gradients, and parameters but each node has the full model</li>
|
| 569 |
-
</ul>
|
| 570 |
-
<aside class="notes">
|
| 571 |
-
<pre><code>FULL_SHARD:
|
| 572 |
-
Parameters, Gradients, Optimizer States: All are sharded.
|
| 573 |
-
Parameters Handling: Unshard before forward pass, reshard after forward pass, unshard before backward pass, reshard after backward pass.
|
| 574 |
-
Gradients Handling: Synchronize and shard after backward pass.
|
| 575 |
-
Optimizer States: Updated locally per rank.</code></pre>
|
| 576 |
-
<p>SHARD_GRAD_OP: Gradients and Optimizer States: Sharded during computation. Parameters: Unshard before forward pass, remain unsharded during forward pass, reshard after backward pass. Inside no_sync(): Parameters are not resharded after backward computation. Optimizer States: Updated locally per rank.</p>
|
| 577 |
-
<p>NO_SHARD: Parameters, Gradients, Optimizer States: Not sharded, replicated across ranks. Gradients Handling: Synchronized via all-reduce after backward pass. Optimizer States: Updated locally per rank.</p>
|
| 578 |
-
<p>HYBRID_SHARD: Parameters, Gradients, Optimizer States: Combines FULL_SHARD within a node and replicates parameters across nodes. Communication: Expensive operations like all-gathers and reduce-scatters are limited to within a node, enhancing performance for medium-sized models.</p>
|
| 579 |
-
<style type="text/css">
|
| 580 |
-
span.MJX_Assistive_MathML {
|
| 581 |
-
position:absolute!important;
|
| 582 |
-
clip: rect(1px, 1px, 1px, 1px);
|
| 583 |
-
padding: 1px 0 0 0!important;
|
| 584 |
-
border: 0!important;
|
| 585 |
-
height: 1px!important;
|
| 586 |
-
width: 1px!important;
|
| 587 |
-
overflow: hidden!important;
|
| 588 |
-
display:block!important;
|
| 589 |
-
}</style></aside></li>
|
| 590 |
-
</ul>
|
| 591 |
-
</section>
|
| 592 |
-
<section id="auto_wrap_policy" class="slide level2">
|
| 593 |
-
<h2><code>auto_wrap_policy</code>:</h2>
|
| 594 |
-
<ul>
|
| 595 |
-
<li>How the model should be split</li>
|
| 596 |
-
<li>Can be either <code>TRANSFORMER_BASED_WRAP</code> or <code>SIZE_BASED_WRAP</code></li>
|
| 597 |
-
<li><code>TRANSFORMER</code>/<code>fsdp_transformers_layer_cls_to_wrap</code>:
|
| 598 |
-
<ul>
|
| 599 |
-
<li>Need to declare the layer</li>
|
| 600 |
-
<li>Generally <code>transformers</code> has good defaults</li>
|
| 601 |
-
</ul></li>
|
| 602 |
-
<li><code>SIZE</code>/<code>fsdp_min_num_param</code>:
|
| 603 |
-
<ul>
|
| 604 |
-
<li>Number of total parameters in a shard</li>
|
| 605 |
-
</ul></li>
|
| 606 |
-
</ul>
|
| 607 |
-
</section>
|
| 608 |
-
<section id="offload_params" class="slide level2">
|
| 609 |
-
<h2><code>offload_params</code>:</h2>
|
| 610 |
-
<ul>
|
| 611 |
-
<li>Offloads the parameters and gradients to the CPU if they can’t fit into memory</li>
|
| 612 |
-
<li>Allows you to train much larger models locally, but will be much slower</li>
|
| 613 |
-
</ul>
|
| 614 |
-
<blockquote>
|
| 615 |
-
<p>Case: FFT of Llama-3-8B with <code>fsdp_offload_params</code> on 2x4090 GPUs was 72hrs, vs ~an hour or two when using 1xH100</p>
|
| 616 |
-
</blockquote>
|
| 617 |
-
</section>
|
| 618 |
-
<section id="cpu_ram_efficient_loading-and-sync_module_states" class="slide level2">
|
| 619 |
-
<h2><code>cpu_ram_efficient_loading</code> and <code>sync_module_states</code></h2>
|
| 620 |
-
<ul>
|
| 621 |
-
<li>Uses the idea behind big model inference/the <code>meta</code> device to load in the model to the GPU in a low-ram scenario</li>
|
| 622 |
-
<li>Rather than needing <code>model_size</code> * <code>n_gpus</code> RAM, we can load the model on a single node and then send the weights directly to each shard when the time is right via <code>sync_module_states</code></li>
|
| 623 |
-
</ul>
|
| 624 |
-
</section></section>
|
| 625 |
-
<section>
|
| 626 |
-
<section id="tying-this-to-accelerate" class="title-slide slide level1 center">
|
| 627 |
-
<h1>Tying this to 🤗 Accelerate</h1>
|
| 628 |
-
|
| 629 |
-
</section>
|
| 630 |
-
<section id="tying-this-to-accelerate-1" class="slide level2">
|
| 631 |
-
<h2>Tying this to 🤗 Accelerate</h2>
|
| 632 |
-
<ul>
|
| 633 |
-
<li>So far we’ve covered the theory, but how do we put it into practice</li>
|
| 634 |
-
<li>By using a library that’s at the heart of the entire open-source ecosystem</li>
|
| 635 |
-
</ul>
|
| 636 |
-
<div style="font-size: 60%;padding-left:10%;padding-top:0%;">
|
| 637 |
-
<ul>
|
| 638 |
-
<li>Nearly all of 🤗</li>
|
| 639 |
-
<li><code>axolotl</code></li>
|
| 640 |
-
<li><code>fastai</code></li>
|
| 641 |
-
<li><code>FastChat</code></li>
|
| 642 |
-
<li><code>lucidrains</code></li>
|
| 643 |
-
<li><code>kornia</code></li>
|
| 644 |
-
</ul>
|
| 645 |
-
</div>
|
| 646 |
-
<p>Are you using it and you don’t even know?</p>
|
| 647 |
-
</section>
|
| 648 |
-
<section id="what-is-accelerate" class="slide level2">
|
| 649 |
-
<h2>What is 🤗 Accelerate?</h2>
|
| 650 |
-
<div class="cell" data-reveal="true" data-fig-height="6">
|
| 651 |
-
<div class="cell-output-display">
|
| 652 |
-
<div>
|
| 653 |
-
<div>
|
| 654 |
-
<pre class="mermaid mermaid-js">graph LR
|
| 655 |
-
A(("🤗 Accelerate#32;"))
|
| 656 |
-
A --> B["CLI Interface#32;"]
|
| 657 |
-
A --> C["Training Library#32;"]
|
| 658 |
-
A --> D["Big Model<br>Inference#32;"]
|
| 659 |
-
</pre>
|
| 660 |
-
</div>
|
| 661 |
-
</div>
|
| 662 |
-
</div>
|
| 663 |
-
</div>
|
| 664 |
-
</section>
|
| 665 |
-
<section id="a-cli-interface" class="slide level2">
|
| 666 |
-
<h2>A CLI Interface</h2>
|
| 667 |
-
<ul>
|
| 668 |
-
<li><code>accelerate config</code>
|
| 669 |
-
<ul>
|
| 670 |
-
<li>Configure the environment</li>
|
| 671 |
-
</ul></li>
|
| 672 |
-
<li><code>accelerate estimate-memory</code>
|
| 673 |
-
<ul>
|
| 674 |
-
<li>How to guess vRAM requirements</li>
|
| 675 |
-
</ul></li>
|
| 676 |
-
<li><code>accelerate launch</code>
|
| 677 |
-
<ul>
|
| 678 |
-
<li>How to run your script</li>
|
| 679 |
-
</ul></li>
|
| 680 |
-
</ul>
|
| 681 |
-
</section>
|
| 682 |
-
<section id="launching-distributed-training-is-hard" class="slide level2">
|
| 683 |
-
<h2>Launching distributed training is hard</h2>
|
| 684 |
-
<ul>
|
| 685 |
-
<li><div class="sourceCode" id="cb2"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb2-1"><a href="#cb2-1"></a><span class="ex">python</span> script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
|
| 686 |
-
<li><div class="sourceCode" id="cb3"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb3-1"><a href="#cb3-1"></a><span class="ex">torchrun</span> <span class="at">--nnodes</span><span class="op">=</span>1 <span class="at">--nproc_per_node</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
|
| 687 |
-
<li><div class="sourceCode" id="cb4"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb4-1"><a href="#cb4-1"></a><span class="ex">deepspeed</span> <span class="at">--num_gpus</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
|
| 688 |
-
</ul>
|
| 689 |
-
<p>How can we make this better?</p>
|
| 690 |
-
</section>
|
| 691 |
-
<section id="accelerate-launch" class="slide level2">
|
| 692 |
-
<h2><code>accelerate launch</code></h2>
|
| 693 |
-
<div class="sourceCode" id="cb5"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb5-1"><a href="#cb5-1"></a><span class="ex">accelerate</span> launch script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 694 |
-
</section>
|
| 695 |
-
<section id="accelerate-config" class="slide level2">
|
| 696 |
-
<h2><code>accelerate config</code></h2>
|
| 697 |
-
<ul>
|
| 698 |
-
<li>Rely on <code>config.yaml</code> files</li>
|
| 699 |
-
<li>Choose to either running <code>accelerate config</code> or write your own:</li>
|
| 700 |
-
</ul>
|
| 701 |
-
<div class="columns" style="font-size: 50%;padding-left:10%;">
|
| 702 |
-
<div class="column" style="width:40%;">
|
| 703 |
-
<div class="code-with-filename">
|
| 704 |
-
<div class="code-with-filename-file">
|
| 705 |
-
<pre><strong>ddp_config.yaml</strong></pre>
|
| 706 |
-
</div>
|
| 707 |
-
<div class="sourceCode" id="cb6" data-filename="ddp_config.yaml"><pre class="sourceCode numberSource yaml number-lines code-with-copy"><code class="sourceCode yaml"><span id="cb6-1"><a href="#cb6-1"></a><span class="fu">compute_environment</span><span class="kw">:</span><span class="at"> LOCAL_MACHINE</span></span>
|
| 708 |
-
<span id="cb6-2"><a href="#cb6-2"></a><span class="fu">distributed_type</span><span class="kw">:</span><span class="at"> MULTI_GPU</span></span>
|
| 709 |
-
<span id="cb6-3"><a href="#cb6-3"></a><span class="fu">main_training_function</span><span class="kw">:</span><span class="at"> main</span></span>
|
| 710 |
-
<span id="cb6-4"><a href="#cb6-4"></a><span class="fu">mixed_precision</span><span class="kw">:</span><span class="at"> bf16</span></span>
|
| 711 |
-
<span id="cb6-5"><a href="#cb6-5"></a><span class="fu">num_machines</span><span class="kw">:</span><span class="at"> </span><span class="dv">1</span></span>
|
| 712 |
-
<span id="cb6-6"><a href="#cb6-6"></a><span class="fu">num_processes</span><span class="kw">:</span><span class="at"> </span><span class="dv">8</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 713 |
-
</div>
|
| 714 |
-
</div><div class="column" style="width:40%;">
|
| 715 |
-
<div class="code-with-filename">
|
| 716 |
-
<div class="code-with-filename-file">
|
| 717 |
-
<pre><strong>fsdp_config.yaml</strong></pre>
|
| 718 |
-
</div>
|
| 719 |
-
<div class="sourceCode" id="cb7" data-filename="fsdp_config.yaml"><pre class="sourceCode numberSource yaml number-lines code-with-copy"><code class="sourceCode yaml"><span id="cb7-1"><a href="#cb7-1"></a><span class="fu">compute_environment</span><span class="kw">:</span><span class="at"> LOCAL_MACHINE</span></span>
|
| 720 |
-
<span id="cb7-2"><a href="#cb7-2"></a><span class="fu">distributed_type</span><span class="kw">:</span><span class="at"> FSDP</span></span>
|
| 721 |
-
<span id="cb7-3"><a href="#cb7-3"></a><span class="fu">fsdp_config</span><span class="kw">:</span></span>
|
| 722 |
-
<span id="cb7-4"><a href="#cb7-4"></a><span class="at"> </span><span class="fu">fsdp_auto_wrap_policy</span><span class="kw">:</span><span class="at"> TRANSFORMER_BASED_WRAP</span></span>
|
| 723 |
-
<span id="cb7-5"><a href="#cb7-5"></a><span class="at"> </span><span class="fu">fsdp_backward_prefetch</span><span class="kw">:</span><span class="at"> BACKWARD_PRE</span></span>
|
| 724 |
-
<span id="cb7-6"><a href="#cb7-6"></a><span class="at"> </span><span class="fu">fsdp_cpu_ram_efficient_loading</span><span class="kw">:</span><span class="at"> </span><span class="ch">true</span></span>
|
| 725 |
-
<span id="cb7-7"><a href="#cb7-7"></a><span class="at"> </span><span class="fu">fsdp_forward_prefetch</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span>
|
| 726 |
-
<span id="cb7-8"><a href="#cb7-8"></a><span class="at"> </span><span class="fu">fsdp_offload_params</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span>
|
| 727 |
-
<span id="cb7-9"><a href="#cb7-9"></a><span class="at"> </span><span class="fu">fsdp_sharding_strategy</span><span class="kw">:</span><span class="at"> FULL_SHARD</span></span>
|
| 728 |
-
<span id="cb7-10"><a href="#cb7-10"></a><span class="at"> </span><span class="fu">fsdp_state_dict_type</span><span class="kw">:</span><span class="at"> SHARDED_STATE_DICT</span></span>
|
| 729 |
-
<span id="cb7-11"><a href="#cb7-11"></a><span class="at"> </span><span class="fu">fsdp_sync_module_states</span><span class="kw">:</span><span class="at"> </span><span class="ch">true</span></span>
|
| 730 |
-
<span id="cb7-12"><a href="#cb7-12"></a><span class="at"> </span><span class="fu">fsdp_use_orig_params</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span>
|
| 731 |
-
<span id="cb7-13"><a href="#cb7-13"></a><span class="fu">main_training_function</span><span class="kw">:</span><span class="at"> main</span></span>
|
| 732 |
-
<span id="cb7-14"><a href="#cb7-14"></a><span class="fu">mixed_precision</span><span class="kw">:</span><span class="at"> bf16</span></span>
|
| 733 |
-
<span id="cb7-15"><a href="#cb7-15"></a><span class="fu">num_machines</span><span class="kw">:</span><span class="at"> </span><span class="dv">1</span></span>
|
| 734 |
-
<span id="cb7-16"><a href="#cb7-16"></a><span class="fu">num_processes</span><span class="kw">:</span><span class="at"> </span><span class="dv">8</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 735 |
-
</div>
|
| 736 |
-
</div>
|
| 737 |
-
</div>
|
| 738 |
-
</section></section>
|
| 739 |
-
<section>
|
| 740 |
-
<section id="a-training-library" class="title-slide slide level1 center">
|
| 741 |
-
<h1>A Training Library</h1>
|
| 742 |
-
|
| 743 |
-
</section>
|
| 744 |
-
<section id="a-training-library-the-code" class="slide level2">
|
| 745 |
-
<h2>A Training Library: The Code</h2>
|
| 746 |
-
<div class="columns" style="font-size: 50%;">
|
| 747 |
-
<div class="column">
|
| 748 |
-
<p><br><br><br></p>
|
| 749 |
-
<div class="sourceCode" id="cb8" data-code-line-numbers="5-6,9"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1"></a><span class="co"># For alignment purposes</span></span>
|
| 750 |
-
<span id="cb8-2"><a href="#cb8-2"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
|
| 751 |
-
<span id="cb8-3"><a href="#cb8-3"></a> optimizer.zero_grad()</span>
|
| 752 |
-
<span id="cb8-4"><a href="#cb8-4"></a> inputs, targets <span class="op">=</span> batch</span>
|
| 753 |
-
<span id="cb8-5"><a href="#cb8-5"></a> inputs <span class="op">=</span> inputs.to(device)</span>
|
| 754 |
-
<span id="cb8-6"><a href="#cb8-6"></a> targets <span class="op">=</span> targets.to(device)</span>
|
| 755 |
-
<span id="cb8-7"><a href="#cb8-7"></a> outputs <span class="op">=</span> model(inputs)</span>
|
| 756 |
-
<span id="cb8-8"><a href="#cb8-8"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
|
| 757 |
-
<span id="cb8-9"><a href="#cb8-9"></a> loss.backward()</span>
|
| 758 |
-
<span id="cb8-10"><a href="#cb8-10"></a> optimizer.step()</span>
|
| 759 |
-
<span id="cb8-11"><a href="#cb8-11"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 760 |
-
</div><div class="column">
|
| 761 |
-
<div class="sourceCode" id="cb9" data-code-line-numbers="1-7,12-13,16"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1"></a><span class="im">from</span> accelerate <span class="im">import</span> Accelerator</span>
|
| 762 |
-
<span id="cb9-2"><a href="#cb9-2"></a>accelerator <span class="op">=</span> Accelerator()</span>
|
| 763 |
-
<span id="cb9-3"><a href="#cb9-3"></a>dataloader, model, optimizer scheduler <span class="op">=</span> (</span>
|
| 764 |
-
<span id="cb9-4"><a href="#cb9-4"></a> accelerator.prepare(</span>
|
| 765 |
-
<span id="cb9-5"><a href="#cb9-5"></a> dataloader, model, optimizer, scheduler</span>
|
| 766 |
-
<span id="cb9-6"><a href="#cb9-6"></a> )</span>
|
| 767 |
-
<span id="cb9-7"><a href="#cb9-7"></a>)</span>
|
| 768 |
-
<span id="cb9-8"><a href="#cb9-8"></a></span>
|
| 769 |
-
<span id="cb9-9"><a href="#cb9-9"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
|
| 770 |
-
<span id="cb9-10"><a href="#cb9-10"></a> optimizer.zero_grad()</span>
|
| 771 |
-
<span id="cb9-11"><a href="#cb9-11"></a> inputs, targets <span class="op">=</span> batch</span>
|
| 772 |
-
<span id="cb9-12"><a href="#cb9-12"></a> <span class="co"># inputs = inputs.to(device)</span></span>
|
| 773 |
-
<span id="cb9-13"><a href="#cb9-13"></a> <span class="co"># targets = targets.to(device)</span></span>
|
| 774 |
-
<span id="cb9-14"><a href="#cb9-14"></a> outputs <span class="op">=</span> model(inputs)</span>
|
| 775 |
-
<span id="cb9-15"><a href="#cb9-15"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
|
| 776 |
-
<span id="cb9-16"><a href="#cb9-16"></a> accelerator.backward(loss) <span class="co"># loss.backward()</span></span>
|
| 777 |
-
<span id="cb9-17"><a href="#cb9-17"></a> optimizer.step()</span>
|
| 778 |
-
<span id="cb9-18"><a href="#cb9-18"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
| 779 |
-
</div>
|
| 780 |
-
</div>
|
| 781 |
-
</section>
|
| 782 |
-
<section id="a-training-library-how-scaling-works" class="slide level2">
|
| 783 |
-
<h2>A Training Library: How Scaling Works</h2>
|
| 784 |
-
<ul>
|
| 785 |
-
<li>Accelerate’s DataLoaders and schedulers work off of a sharding mindset</li>
|
| 786 |
-
<li>Rather than repeating the same data across <code>n</code> nodes, we instead split it</li>
|
| 787 |
-
<li>Speeds up training linearly</li>
|
| 788 |
-
<li>Given a batch size of 16 on a single GPU, to recreate this across 8 GPUs you would use a batch size of 2</li>
|
| 789 |
-
<li>This also means the scheduler will be stepped <code>n</code> GPUs at a time per “global step”</li>
|
| 790 |
-
</ul>
|
| 791 |
-
</section>
|
| 792 |
-
<section id="a-training-library-mixed-precision" class="slide level2">
|
| 793 |
-
<h2>A Training Library: Mixed Precision</h2>
|
| 794 |
-
<ul>
|
| 795 |
-
<li>This may be a bit different than your “normal” idea of mixed precision.</li>
|
| 796 |
-
<li>We do <strong>not</strong> convert the model weights to BF16/FP16</li>
|
| 797 |
-
<li>Instead we <strong>wrap the forward pass</strong> with <code>autocast</code> to convert the gradients automatically</li>
|
| 798 |
-
<li>This preserves the original precision of the weights, which leads to stable training and better fine-tuning later on.</li>
|
| 799 |
-
<li><strong>If you use <code>.bf16()</code> weights, you are STUCK in bf16 perminantly</strong></li>
|
| 800 |
-
</ul>
|
| 801 |
-
</section>
|
| 802 |
-
<section id="a-training-library-mixed-precision-1" class="slide level2">
|
| 803 |
-
<h2>A Training Library: Mixed Precision</h2>
|
| 804 |
-
<ul>
|
| 805 |
-
<li>Let’s tie that back up to the model estimator with neat tools like NVIDIA’s TransformerEngine</li>
|
| 806 |
-
</ul>
|
| 807 |
-
<div style="font-size: 60%;">
|
| 808 |
-
<table style="width:100%;">
|
| 809 |
-
<colgroup>
|
| 810 |
-
<col style="width: 14%">
|
| 811 |
-
<col style="width: 14%">
|
| 812 |
-
<col style="width: 14%">
|
| 813 |
-
<col style="width: 14%">
|
| 814 |
-
<col style="width: 14%">
|
| 815 |
-
<col style="width: 14%">
|
| 816 |
-
<col style="width: 14%">
|
| 817 |
-
</colgroup>
|
| 818 |
-
<thead>
|
| 819 |
-
<tr class="header">
|
| 820 |
-
<th>Optimization Level</th>
|
| 821 |
-
<th>Computation (GEMM)</th>
|
| 822 |
-
<th>Comm</th>
|
| 823 |
-
<th>Weight</th>
|
| 824 |
-
<th>Master Weight</th>
|
| 825 |
-
<th>Weight Gradient</th>
|
| 826 |
-
<th>Optimizer States</th>
|
| 827 |
-
</tr>
|
| 828 |
-
</thead>
|
| 829 |
-
<tbody>
|
| 830 |
-
<tr class="odd">
|
| 831 |
-
<td>FP16 AMP</td>
|
| 832 |
-
<td>FP16</td>
|
| 833 |
-
<td>FP32</td>
|
| 834 |
-
<td>FP32</td>
|
| 835 |
-
<td>N/A</td>
|
| 836 |
-
<td>FP32</td>
|
| 837 |
-
<td>FP32+FP32</td>
|
| 838 |
-
</tr>
|
| 839 |
-
<tr class="even">
|
| 840 |
-
<td>Nvidia TE</td>
|
| 841 |
-
<td>FP8</td>
|
| 842 |
-
<td>FP32</td>
|
| 843 |
-
<td>FP32</td>
|
| 844 |
-
<td>N/A</td>
|
| 845 |
-
<td>FP32</td>
|
| 846 |
-
<td>FP32+FP32</td>
|
| 847 |
-
</tr>
|
| 848 |
-
<tr class="odd">
|
| 849 |
-
<td>MS-AMP O1</td>
|
| 850 |
-
<td>FP8</td>
|
| 851 |
-
<td>FP8</td>
|
| 852 |
-
<td>FP16</td>
|
| 853 |
-
<td>N/A</td>
|
| 854 |
-
<td>FP8</td>
|
| 855 |
-
<td>FP32+FP32</td>
|
| 856 |
-
</tr>
|
| 857 |
-
<tr class="even">
|
| 858 |
-
<td>MS-AMP O2</td>
|
| 859 |
-
<td>FP8</td>
|
| 860 |
-
<td>FP8</td>
|
| 861 |
-
<td>FP16</td>
|
| 862 |
-
<td>N/A</td>
|
| 863 |
-
<td>FP8</td>
|
| 864 |
-
<td>FP8+FP16</td>
|
| 865 |
-
</tr>
|
| 866 |
-
<tr class="odd">
|
| 867 |
-
<td>MS-AMP O3</td>
|
| 868 |
-
<td>FP8</td>
|
| 869 |
-
<td>FP8</td>
|
| 870 |
-
<td>FP8</td>
|
| 871 |
-
<td>FP16</td>
|
| 872 |
-
<td>FP8</td>
|
| 873 |
-
<td>FP8+FP16</td>
|
| 874 |
-
</tr>
|
| 875 |
-
</tbody>
|
| 876 |
-
</table>
|
| 877 |
-
</div>
|
| 878 |
-
<aside class="notes">
|
| 879 |
-
<p>What is actually happening: * Linear Layers and other certain compatible layers are wrapped in a special version that allows for FP8 computation * The general forward pass is wrapped around BF16 * This means that the most memory saved is done during the gradients of the model, <em>not</em> the model itself. * With tools like <code>MS-AMP</code> we can convert more chunks into lower precision, but again like before stable training occurs when the models weights are in full precision and the backprop happens in full precision too.</p>
|
| 880 |
-
<style type="text/css">
|
| 881 |
-
span.MJX_Assistive_MathML {
|
| 882 |
-
position:absolute!important;
|
| 883 |
-
clip: rect(1px, 1px, 1px, 1px);
|
| 884 |
-
padding: 1px 0 0 0!important;
|
| 885 |
-
border: 0!important;
|
| 886 |
-
height: 1px!important;
|
| 887 |
-
width: 1px!important;
|
| 888 |
-
overflow: hidden!important;
|
| 889 |
-
display:block!important;
|
| 890 |
-
}</style></aside>
|
| 891 |
-
</section>
|
| 892 |
-
<section id="deepspeed-vs-fully-sharded-data-parallelism" class="slide level2">
|
| 893 |
-
<h2>DeepSpeed vs Fully Sharded Data Parallelism</h2>
|
| 894 |
-
<ul>
|
| 895 |
-
<li>Extremely similar, however mostly used different naming conventions for items and slight tweaks in the implementation</li>
|
| 896 |
-
</ul>
|
| 897 |
-
<div style="font-size: 50%;">
|
| 898 |
-
<table style="width:100%;">
|
| 899 |
-
<colgroup>
|
| 900 |
-
<col style="width: 16%">
|
| 901 |
-
<col style="width: 16%">
|
| 902 |
-
<col style="width: 16%">
|
| 903 |
-
<col style="width: 16%">
|
| 904 |
-
<col style="width: 16%">
|
| 905 |
-
<col style="width: 16%">
|
| 906 |
-
</colgroup>
|
| 907 |
-
<thead>
|
| 908 |
-
<tr class="header">
|
| 909 |
-
<th>Framework</th>
|
| 910 |
-
<th>Model Loading (<code>torch_dtype</code>)</th>
|
| 911 |
-
<th>Mixed Precision</th>
|
| 912 |
-
<th>Preparation (Local)</th>
|
| 913 |
-
<th>Training</th>
|
| 914 |
-
<th>Optimizer (Local)</th>
|
| 915 |
-
</tr>
|
| 916 |
-
</thead>
|
| 917 |
-
<tbody>
|
| 918 |
-
<tr class="odd">
|
| 919 |
-
<td>FSDP</td>
|
| 920 |
-
<td>bf16</td>
|
| 921 |
-
<td>default (none)</td>
|
| 922 |
-
<td>bf16</td>
|
| 923 |
-
<td>bf16</td>
|
| 924 |
-
<td>bf16</td>
|
| 925 |
-
</tr>
|
| 926 |
-
<tr class="even">
|
| 927 |
-
<td>FSDP</td>
|
| 928 |
-
<td>bf16</td>
|
| 929 |
-
<td>bf16</td>
|
| 930 |
-
<td>fp32</td>
|
| 931 |
-
<td>bf16</td>
|
| 932 |
-
<td>fp32</td>
|
| 933 |
-
</tr>
|
| 934 |
-
<tr class="odd">
|
| 935 |
-
<td>DeepSpeed</td>
|
| 936 |
-
<td>bf16</td>
|
| 937 |
-
<td>bf16</td>
|
| 938 |
-
<td>fp32</td>
|
| 939 |
-
<td>bf16</td>
|
| 940 |
-
<td>fp32</td>
|
| 941 |
-
</tr>
|
| 942 |
-
</tbody>
|
| 943 |
-
</table>
|
| 944 |
-
</div>
|
| 945 |
-
<p>To learn more, check out the <a href="https://huggingface.co/docs/accelerate/concept_guides/fsdp_and_deepspeed">documentation</a> or join my office hours</p>
|
| 946 |
-
</section>
|
| 947 |
-
<section id="key-takeaways" class="slide level2">
|
| 948 |
-
<h2>Key Takeaways:</h2>
|
| 949 |
-
<ul>
|
| 950 |
-
<li>You can scale out training with <code>accelerate</code>, FSDP, and DeepSpeed across multiple GPUs to train bigger models</li>
|
| 951 |
-
<li>Techniques like <code>FP8</code> can help speed up training some and reduce computational overhead</li>
|
| 952 |
-
<li>Comes at a cost of end-precision and locking model weights for futher fine-tunes if not careful</li>
|
| 953 |
-
</ul>
|
| 954 |
-
</section>
|
| 955 |
-
<section id="some-handy-resources" class="slide level2">
|
| 956 |
-
<h2>Some Handy Resources</h2>
|
| 957 |
-
<ul>
|
| 958 |
-
<li><a href="https://hf.co/docs/accelerate">🤗 Accelerate documentation</a></li>
|
| 959 |
-
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/launch">Launching distributed code</a></li>
|
| 960 |
-
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/notebook">Distributed code and Jupyter Notebooks</a></li>
|
| 961 |
-
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/migration">Migrating to 🤗 Accelerate easily</a></li>
|
| 962 |
-
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/big_modeling">Big Model Inference tutorial</a></li>
|
| 963 |
-
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/deepspeed">DeepSpeed and 🤗 Accelerate</a></li>
|
| 964 |
-
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/fsdp">Fully Sharded Data Parallelism and 🤗 Accelerate</a></li>
|
| 965 |
-
<li><a href="https://huggingface.co/docs/accelerate/concept_guides/fsdp_and_deepspeed">FSDP vs DeepSpeed In-Depth</a></li>
|
| 966 |
-
</ul>
|
| 967 |
-
<div class="footer footer-default">
|
| 968 |
-
|
| 969 |
-
</div>
|
| 970 |
-
</section></section>
|
| 971 |
-
</div>
|
| 972 |
-
</div>
|
| 973 |
-
|
| 974 |
-
<script>window.backupDefine = window.define; window.define = undefined;</script>
|
| 975 |
-
<script src="llm_conf_files/libs/revealjs/dist/reveal.js"></script>
|
| 976 |
-
<!-- reveal.js plugins -->
|
| 977 |
-
<script src="llm_conf_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js"></script>
|
| 978 |
-
<script src="llm_conf_files/libs/revealjs/plugin/pdf-export/pdfexport.js"></script>
|
| 979 |
-
<script src="llm_conf_files/libs/revealjs/plugin/reveal-menu/menu.js"></script>
|
| 980 |
-
<script src="llm_conf_files/libs/revealjs/plugin/reveal-menu/quarto-menu.js"></script>
|
| 981 |
-
<script src="llm_conf_files/libs/revealjs/plugin/quarto-support/support.js"></script>
|
| 982 |
-
|
| 983 |
-
|
| 984 |
-
<script src="llm_conf_files/libs/revealjs/plugin/notes/notes.js"></script>
|
| 985 |
-
<script src="llm_conf_files/libs/revealjs/plugin/search/search.js"></script>
|
| 986 |
-
<script src="llm_conf_files/libs/revealjs/plugin/zoom/zoom.js"></script>
|
| 987 |
-
<script src="llm_conf_files/libs/revealjs/plugin/math/math.js"></script>
|
| 988 |
-
<script>window.define = window.backupDefine; window.backupDefine = undefined;</script>
|
| 989 |
-
|
| 990 |
-
<script>
|
| 991 |
-
|
| 992 |
-
// Full list of configuration options available at:
|
| 993 |
-
// https://revealjs.com/config/
|
| 994 |
-
Reveal.initialize({
|
| 995 |
-
'controlsAuto': true,
|
| 996 |
-
'previewLinksAuto': false,
|
| 997 |
-
'pdfSeparateFragments': false,
|
| 998 |
-
'autoAnimateEasing': "ease",
|
| 999 |
-
'autoAnimateDuration': 1,
|
| 1000 |
-
'autoAnimateUnmatched': true,
|
| 1001 |
-
'menu': {"side":"left","useTextContentForMissingTitles":true,"markers":false,"loadIcons":false,"custom":[{"title":"Tools","icon":"<i class=\"fas fa-gear\"></i>","content":"<ul class=\"slide-menu-items\">\n<li class=\"slide-tool-item active\" data-item=\"0\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.fullscreen(event)\"><kbd>f</kbd> Fullscreen</a></li>\n<li class=\"slide-tool-item\" data-item=\"1\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.speakerMode(event)\"><kbd>s</kbd> Speaker View</a></li>\n<li class=\"slide-tool-item\" data-item=\"2\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>o</kbd> Slide Overview</a></li>\n<li class=\"slide-tool-item\" data-item=\"3\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.togglePdfExport(event)\"><kbd>e</kbd> PDF Export Mode</a></li>\n<li class=\"slide-tool-item\" data-item=\"4\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.keyboardHelp(event)\"><kbd>?</kbd> Keyboard Help</a></li>\n</ul>"}],"openButton":true},
|
| 1002 |
-
'smaller': false,
|
| 1003 |
-
|
| 1004 |
-
// Display controls in the bottom right corner
|
| 1005 |
-
controls: false,
|
| 1006 |
-
|
| 1007 |
-
// Help the user learn the controls by providing hints, for example by
|
| 1008 |
-
// bouncing the down arrow when they first encounter a vertical slide
|
| 1009 |
-
controlsTutorial: false,
|
| 1010 |
-
|
| 1011 |
-
// Determines where controls appear, "edges" or "bottom-right"
|
| 1012 |
-
controlsLayout: 'edges',
|
| 1013 |
-
|
| 1014 |
-
// Visibility rule for backwards navigation arrows; "faded", "hidden"
|
| 1015 |
-
// or "visible"
|
| 1016 |
-
controlsBackArrows: 'faded',
|
| 1017 |
-
|
| 1018 |
-
// Display a presentation progress bar
|
| 1019 |
-
progress: true,
|
| 1020 |
-
|
| 1021 |
-
// Display the page number of the current slide
|
| 1022 |
-
slideNumber: false,
|
| 1023 |
-
|
| 1024 |
-
// 'all', 'print', or 'speaker'
|
| 1025 |
-
showSlideNumber: 'all',
|
| 1026 |
-
|
| 1027 |
-
// Add the current slide number to the URL hash so that reloading the
|
| 1028 |
-
// page/copying the URL will return you to the same slide
|
| 1029 |
-
hash: true,
|
| 1030 |
-
|
| 1031 |
-
// Start with 1 for the hash rather than 0
|
| 1032 |
-
hashOneBasedIndex: false,
|
| 1033 |
-
|
| 1034 |
-
// Flags if we should monitor the hash and change slides accordingly
|
| 1035 |
-
respondToHashChanges: true,
|
| 1036 |
-
|
| 1037 |
-
// Push each slide change to the browser history
|
| 1038 |
-
history: true,
|
| 1039 |
-
|
| 1040 |
-
// Enable keyboard shortcuts for navigation
|
| 1041 |
-
keyboard: true,
|
| 1042 |
-
|
| 1043 |
-
// Enable the slide overview mode
|
| 1044 |
-
overview: true,
|
| 1045 |
-
|
| 1046 |
-
// Disables the default reveal.js slide layout (scaling and centering)
|
| 1047 |
-
// so that you can use custom CSS layout
|
| 1048 |
-
disableLayout: false,
|
| 1049 |
-
|
| 1050 |
-
// Vertical centering of slides
|
| 1051 |
-
center: false,
|
| 1052 |
-
|
| 1053 |
-
// Enables touch navigation on devices with touch input
|
| 1054 |
-
touch: true,
|
| 1055 |
-
|
| 1056 |
-
// Loop the presentation
|
| 1057 |
-
loop: false,
|
| 1058 |
-
|
| 1059 |
-
// Change the presentation direction to be RTL
|
| 1060 |
-
rtl: false,
|
| 1061 |
-
|
| 1062 |
-
// see https://revealjs.com/vertical-slides/#navigation-mode
|
| 1063 |
-
navigationMode: 'linear',
|
| 1064 |
-
|
| 1065 |
-
// Randomizes the order of slides each time the presentation loads
|
| 1066 |
-
shuffle: false,
|
| 1067 |
-
|
| 1068 |
-
// Turns fragments on and off globally
|
| 1069 |
-
fragments: true,
|
| 1070 |
-
|
| 1071 |
-
// Flags whether to include the current fragment in the URL,
|
| 1072 |
-
// so that reloading brings you to the same fragment position
|
| 1073 |
-
fragmentInURL: false,
|
| 1074 |
-
|
| 1075 |
-
// Flags if the presentation is running in an embedded mode,
|
| 1076 |
-
// i.e. contained within a limited portion of the screen
|
| 1077 |
-
embedded: false,
|
| 1078 |
-
|
| 1079 |
-
// Flags if we should show a help overlay when the questionmark
|
| 1080 |
-
// key is pressed
|
| 1081 |
-
help: true,
|
| 1082 |
-
|
| 1083 |
-
// Flags if it should be possible to pause the presentation (blackout)
|
| 1084 |
-
pause: true,
|
| 1085 |
-
|
| 1086 |
-
// Flags if speaker notes should be visible to all viewers
|
| 1087 |
-
showNotes: false,
|
| 1088 |
-
|
| 1089 |
-
// Global override for autoplaying embedded media (null/true/false)
|
| 1090 |
-
autoPlayMedia: null,
|
| 1091 |
-
|
| 1092 |
-
// Global override for preloading lazy-loaded iframes (null/true/false)
|
| 1093 |
-
preloadIframes: null,
|
| 1094 |
-
|
| 1095 |
-
// Number of milliseconds between automatically proceeding to the
|
| 1096 |
-
// next slide, disabled when set to 0, this value can be overwritten
|
| 1097 |
-
// by using a data-autoslide attribute on your slides
|
| 1098 |
-
autoSlide: 0,
|
| 1099 |
-
|
| 1100 |
-
// Stop auto-sliding after user input
|
| 1101 |
-
autoSlideStoppable: true,
|
| 1102 |
-
|
| 1103 |
-
// Use this method for navigation when auto-sliding
|
| 1104 |
-
autoSlideMethod: null,
|
| 1105 |
-
|
| 1106 |
-
// Specify the average time in seconds that you think you will spend
|
| 1107 |
-
// presenting each slide. This is used to show a pacing timer in the
|
| 1108 |
-
// speaker view
|
| 1109 |
-
defaultTiming: null,
|
| 1110 |
-
|
| 1111 |
-
// Enable slide navigation via mouse wheel
|
| 1112 |
-
mouseWheel: false,
|
| 1113 |
-
|
| 1114 |
-
// The display mode that will be used to show slides
|
| 1115 |
-
display: 'block',
|
| 1116 |
-
|
| 1117 |
-
// Hide cursor if inactive
|
| 1118 |
-
hideInactiveCursor: true,
|
| 1119 |
-
|
| 1120 |
-
// Time before the cursor is hidden (in ms)
|
| 1121 |
-
hideCursorTime: 5000,
|
| 1122 |
-
|
| 1123 |
-
// Opens links in an iframe preview overlay
|
| 1124 |
-
previewLinks: false,
|
| 1125 |
-
|
| 1126 |
-
// Transition style (none/fade/slide/convex/concave/zoom)
|
| 1127 |
-
transition: 'none',
|
| 1128 |
-
|
| 1129 |
-
// Transition speed (default/fast/slow)
|
| 1130 |
-
transitionSpeed: 'default',
|
| 1131 |
-
|
| 1132 |
-
// Transition style for full page slide backgrounds
|
| 1133 |
-
// (none/fade/slide/convex/concave/zoom)
|
| 1134 |
-
backgroundTransition: 'none',
|
| 1135 |
-
|
| 1136 |
-
// Number of slides away from the current that are visible
|
| 1137 |
-
viewDistance: 3,
|
| 1138 |
-
|
| 1139 |
-
// Number of slides away from the current that are visible on mobile
|
| 1140 |
-
// devices. It is advisable to set this to a lower number than
|
| 1141 |
-
// viewDistance in order to save resources.
|
| 1142 |
-
mobileViewDistance: 2,
|
| 1143 |
-
|
| 1144 |
-
// The "normal" size of the presentation, aspect ratio will be preserved
|
| 1145 |
-
// when the presentation is scaled to fit different resolutions. Can be
|
| 1146 |
-
// specified using percentage units.
|
| 1147 |
-
width: 1050,
|
| 1148 |
-
|
| 1149 |
-
height: 700,
|
| 1150 |
-
|
| 1151 |
-
// Factor of the display size that should remain empty around the content
|
| 1152 |
-
margin: 0.1,
|
| 1153 |
-
|
| 1154 |
-
math: {
|
| 1155 |
-
mathjax: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js',
|
| 1156 |
-
config: 'TeX-AMS_HTML-full',
|
| 1157 |
-
tex2jax: {
|
| 1158 |
-
inlineMath: [['\\(','\\)']],
|
| 1159 |
-
displayMath: [['\\[','\\]']],
|
| 1160 |
-
balanceBraces: true,
|
| 1161 |
-
processEscapes: false,
|
| 1162 |
-
processRefs: true,
|
| 1163 |
-
processEnvironments: true,
|
| 1164 |
-
preview: 'TeX',
|
| 1165 |
-
skipTags: ['script','noscript','style','textarea','pre','code'],
|
| 1166 |
-
ignoreClass: 'tex2jax_ignore',
|
| 1167 |
-
processClass: 'tex2jax_process'
|
| 1168 |
-
},
|
| 1169 |
-
},
|
| 1170 |
-
|
| 1171 |
-
// reveal.js plugins
|
| 1172 |
-
plugins: [QuartoLineHighlight, PdfExport, RevealMenu, QuartoSupport,
|
| 1173 |
-
|
| 1174 |
-
RevealMath,
|
| 1175 |
-
RevealNotes,
|
| 1176 |
-
RevealSearch,
|
| 1177 |
-
RevealZoom
|
| 1178 |
-
]
|
| 1179 |
-
});
|
| 1180 |
-
</script>
|
| 1181 |
-
<script id="quarto-html-after-body" type="application/javascript">
|
| 1182 |
-
window.document.addEventListener("DOMContentLoaded", function (event) {
|
| 1183 |
-
const toggleBodyColorMode = (bsSheetEl) => {
|
| 1184 |
-
const mode = bsSheetEl.getAttribute("data-mode");
|
| 1185 |
-
const bodyEl = window.document.querySelector("body");
|
| 1186 |
-
if (mode === "dark") {
|
| 1187 |
-
bodyEl.classList.add("quarto-dark");
|
| 1188 |
-
bodyEl.classList.remove("quarto-light");
|
| 1189 |
-
} else {
|
| 1190 |
-
bodyEl.classList.add("quarto-light");
|
| 1191 |
-
bodyEl.classList.remove("quarto-dark");
|
| 1192 |
-
}
|
| 1193 |
-
}
|
| 1194 |
-
const toggleBodyColorPrimary = () => {
|
| 1195 |
-
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
|
| 1196 |
-
if (bsSheetEl) {
|
| 1197 |
-
toggleBodyColorMode(bsSheetEl);
|
| 1198 |
-
}
|
| 1199 |
-
}
|
| 1200 |
-
toggleBodyColorPrimary();
|
| 1201 |
-
const tabsets = window.document.querySelectorAll(".panel-tabset-tabby")
|
| 1202 |
-
tabsets.forEach(function(tabset) {
|
| 1203 |
-
const tabby = new Tabby('#' + tabset.id);
|
| 1204 |
-
});
|
| 1205 |
-
const isCodeAnnotation = (el) => {
|
| 1206 |
-
for (const clz of el.classList) {
|
| 1207 |
-
if (clz.startsWith('code-annotation-')) {
|
| 1208 |
-
return true;
|
| 1209 |
-
}
|
| 1210 |
-
}
|
| 1211 |
-
return false;
|
| 1212 |
-
}
|
| 1213 |
-
const clipboard = new window.ClipboardJS('.code-copy-button', {
|
| 1214 |
-
text: function(trigger) {
|
| 1215 |
-
const codeEl = trigger.previousElementSibling.cloneNode(true);
|
| 1216 |
-
for (const childEl of codeEl.children) {
|
| 1217 |
-
if (isCodeAnnotation(childEl)) {
|
| 1218 |
-
childEl.remove();
|
| 1219 |
-
}
|
| 1220 |
-
}
|
| 1221 |
-
return codeEl.innerText;
|
| 1222 |
-
}
|
| 1223 |
-
});
|
| 1224 |
-
clipboard.on('success', function(e) {
|
| 1225 |
-
// button target
|
| 1226 |
-
const button = e.trigger;
|
| 1227 |
-
// don't keep focus
|
| 1228 |
-
button.blur();
|
| 1229 |
-
// flash "checked"
|
| 1230 |
-
button.classList.add('code-copy-button-checked');
|
| 1231 |
-
var currentTitle = button.getAttribute("title");
|
| 1232 |
-
button.setAttribute("title", "Copied!");
|
| 1233 |
-
let tooltip;
|
| 1234 |
-
if (window.bootstrap) {
|
| 1235 |
-
button.setAttribute("data-bs-toggle", "tooltip");
|
| 1236 |
-
button.setAttribute("data-bs-placement", "left");
|
| 1237 |
-
button.setAttribute("data-bs-title", "Copied!");
|
| 1238 |
-
tooltip = new bootstrap.Tooltip(button,
|
| 1239 |
-
{ trigger: "manual",
|
| 1240 |
-
customClass: "code-copy-button-tooltip",
|
| 1241 |
-
offset: [0, -8]});
|
| 1242 |
-
tooltip.show();
|
| 1243 |
-
}
|
| 1244 |
-
setTimeout(function() {
|
| 1245 |
-
if (tooltip) {
|
| 1246 |
-
tooltip.hide();
|
| 1247 |
-
button.removeAttribute("data-bs-title");
|
| 1248 |
-
button.removeAttribute("data-bs-toggle");
|
| 1249 |
-
button.removeAttribute("data-bs-placement");
|
| 1250 |
-
}
|
| 1251 |
-
button.setAttribute("title", currentTitle);
|
| 1252 |
-
button.classList.remove('code-copy-button-checked');
|
| 1253 |
-
}, 1000);
|
| 1254 |
-
// clear code selection
|
| 1255 |
-
e.clearSelection();
|
| 1256 |
-
});
|
| 1257 |
-
function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
|
| 1258 |
-
const config = {
|
| 1259 |
-
allowHTML: true,
|
| 1260 |
-
maxWidth: 500,
|
| 1261 |
-
delay: 100,
|
| 1262 |
-
arrow: false,
|
| 1263 |
-
appendTo: function(el) {
|
| 1264 |
-
return el.closest('section.slide') || el.parentElement;
|
| 1265 |
-
},
|
| 1266 |
-
interactive: true,
|
| 1267 |
-
interactiveBorder: 10,
|
| 1268 |
-
theme: 'light-border',
|
| 1269 |
-
placement: 'bottom-start',
|
| 1270 |
-
};
|
| 1271 |
-
if (contentFn) {
|
| 1272 |
-
config.content = contentFn;
|
| 1273 |
-
}
|
| 1274 |
-
if (onTriggerFn) {
|
| 1275 |
-
config.onTrigger = onTriggerFn;
|
| 1276 |
-
}
|
| 1277 |
-
if (onUntriggerFn) {
|
| 1278 |
-
config.onUntrigger = onUntriggerFn;
|
| 1279 |
-
}
|
| 1280 |
-
config['offset'] = [0,0];
|
| 1281 |
-
config['maxWidth'] = 700;
|
| 1282 |
-
window.tippy(el, config);
|
| 1283 |
-
}
|
| 1284 |
-
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
|
| 1285 |
-
for (var i=0; i<noterefs.length; i++) {
|
| 1286 |
-
const ref = noterefs[i];
|
| 1287 |
-
tippyHover(ref, function() {
|
| 1288 |
-
// use id or data attribute instead here
|
| 1289 |
-
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
|
| 1290 |
-
try { href = new URL(href).hash; } catch {}
|
| 1291 |
-
const id = href.replace(/^#\/?/, "");
|
| 1292 |
-
const note = window.document.getElementById(id);
|
| 1293 |
-
return note.innerHTML;
|
| 1294 |
-
});
|
| 1295 |
-
}
|
| 1296 |
-
const findCites = (el) => {
|
| 1297 |
-
const parentEl = el.parentElement;
|
| 1298 |
-
if (parentEl) {
|
| 1299 |
-
const cites = parentEl.dataset.cites;
|
| 1300 |
-
if (cites) {
|
| 1301 |
-
return {
|
| 1302 |
-
el,
|
| 1303 |
-
cites: cites.split(' ')
|
| 1304 |
-
};
|
| 1305 |
-
} else {
|
| 1306 |
-
return findCites(el.parentElement)
|
| 1307 |
-
}
|
| 1308 |
-
} else {
|
| 1309 |
-
return undefined;
|
| 1310 |
-
}
|
| 1311 |
-
};
|
| 1312 |
-
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
|
| 1313 |
-
for (var i=0; i<bibliorefs.length; i++) {
|
| 1314 |
-
const ref = bibliorefs[i];
|
| 1315 |
-
const citeInfo = findCites(ref);
|
| 1316 |
-
if (citeInfo) {
|
| 1317 |
-
tippyHover(citeInfo.el, function() {
|
| 1318 |
-
var popup = window.document.createElement('div');
|
| 1319 |
-
citeInfo.cites.forEach(function(cite) {
|
| 1320 |
-
var citeDiv = window.document.createElement('div');
|
| 1321 |
-
citeDiv.classList.add('hanging-indent');
|
| 1322 |
-
citeDiv.classList.add('csl-entry');
|
| 1323 |
-
var biblioDiv = window.document.getElementById('ref-' + cite);
|
| 1324 |
-
if (biblioDiv) {
|
| 1325 |
-
citeDiv.innerHTML = biblioDiv.innerHTML;
|
| 1326 |
-
}
|
| 1327 |
-
popup.appendChild(citeDiv);
|
| 1328 |
-
});
|
| 1329 |
-
return popup.innerHTML;
|
| 1330 |
-
});
|
| 1331 |
-
}
|
| 1332 |
-
}
|
| 1333 |
-
});
|
| 1334 |
-
</script>
|
| 1335 |
-
|
| 1336 |
-
|
| 1337 |
-
</body></html>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|