Add notebook
Browse files- Accelerate.ipynb +612 -0
Accelerate.ipynb
ADDED
|
@@ -0,0 +1,612 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "ff5c7a97-02d5-4aea-8bd5-59be5e62bf01",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"---\n",
|
| 9 |
+
"title: \"Accelerate, Three Powerful Sublibraries for PyTorch\"\n",
|
| 10 |
+
"author: \"Zachary Mueller\"\n",
|
| 11 |
+
"format: \n",
|
| 12 |
+
" revealjs:\n",
|
| 13 |
+
" theme: moon\n",
|
| 14 |
+
" fig-format: png\n",
|
| 15 |
+
"---"
|
| 16 |
+
]
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"attachments": {},
|
| 20 |
+
"cell_type": "markdown",
|
| 21 |
+
"id": "f2333422",
|
| 22 |
+
"metadata": {},
|
| 23 |
+
"source": [
|
| 24 |
+
"## Test Gradio {background-iframe=\"https://muellerzr-accelerate-presentation.hf.space\"}"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "markdown",
|
| 29 |
+
"id": "45e61402-f734-4500-8eb6-fcdd6f17a0d4",
|
| 30 |
+
"metadata": {},
|
| 31 |
+
"source": [
|
| 32 |
+
"## Who am I?\n",
|
| 33 |
+
"\n",
|
| 34 |
+
"- Zachary Mueller\n",
|
| 35 |
+
"- Deep Learning Software Engineer at 🤗\n",
|
| 36 |
+
"- API design geek"
|
| 37 |
+
]
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"cell_type": "markdown",
|
| 41 |
+
"id": "8f9864d2-5787-4af3-a08d-b372e5851a0f",
|
| 42 |
+
"metadata": {},
|
| 43 |
+
"source": [
|
| 44 |
+
"## What is 🤗 Accelerate?"
|
| 45 |
+
]
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"cell_type": "markdown",
|
| 49 |
+
"id": "166b148a-e2f0-46b0-bc61-ac6e81da5ac5",
|
| 50 |
+
"metadata": {},
|
| 51 |
+
"source": [
|
| 52 |
+
"```{mermaid}\n",
|
| 53 |
+
"%%| fig-height: 6\n",
|
| 54 |
+
"graph LR\n",
|
| 55 |
+
" A{\"🤗 Accelerate#32;\"}\n",
|
| 56 |
+
" A --> B[\"Launching<br>Interface#32;\"]\n",
|
| 57 |
+
" A --> C[\"Training Library#32;\"]\n",
|
| 58 |
+
" A --> D[\"Big Model<br>Inference#32;\"]\n",
|
| 59 |
+
"```"
|
| 60 |
+
]
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"cell_type": "markdown",
|
| 64 |
+
"id": "84d6fd12-18cd-4448-9123-821133673b95",
|
| 65 |
+
"metadata": {},
|
| 66 |
+
"source": [
|
| 67 |
+
"# A Launching Interface\n",
|
| 68 |
+
"\n",
|
| 69 |
+
"Can't I just use `python do_the_thing.py`?"
|
| 70 |
+
]
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"cell_type": "markdown",
|
| 74 |
+
"id": "e5488645-daa3-4353-be9f-7af765a52666",
|
| 75 |
+
"metadata": {},
|
| 76 |
+
"source": [
|
| 77 |
+
"## A Launching Interface\n",
|
| 78 |
+
"\n",
|
| 79 |
+
"Launching scripts in different environments is complicated:"
|
| 80 |
+
]
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"cell_type": "markdown",
|
| 84 |
+
"id": "ce856633-1909-4f18-9610-e934194dd584",
|
| 85 |
+
"metadata": {},
|
| 86 |
+
"source": [
|
| 87 |
+
"- ```bash \n",
|
| 88 |
+
"python script.py\n",
|
| 89 |
+
"```\n",
|
| 90 |
+
"\n",
|
| 91 |
+
"- ```bash \n",
|
| 92 |
+
"torchrun --nnodes=1 --nproc_per_node=2 script.py\n",
|
| 93 |
+
"```\n",
|
| 94 |
+
"\n",
|
| 95 |
+
"- ```bash \n",
|
| 96 |
+
"deepspeed --num_gpus=2 script.py\n",
|
| 97 |
+
"```\n",
|
| 98 |
+
"\n",
|
| 99 |
+
"And more!"
|
| 100 |
+
]
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"cell_type": "markdown",
|
| 104 |
+
"id": "4e6414d0-f8f8-4bd2-b06f-fe7f848320f1",
|
| 105 |
+
"metadata": {
|
| 106 |
+
"tags": []
|
| 107 |
+
},
|
| 108 |
+
"source": [
|
| 109 |
+
"## A Launching Interface\n",
|
| 110 |
+
"\n",
|
| 111 |
+
"But it doesn't have to be:"
|
| 112 |
+
]
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"cell_type": "markdown",
|
| 116 |
+
"id": "5dfd30c0-7240-4a13-9b51-061c4762b37e",
|
| 117 |
+
"metadata": {},
|
| 118 |
+
"source": [
|
| 119 |
+
"```bash\n",
|
| 120 |
+
"accelerate launch script.py\n",
|
| 121 |
+
"```\n",
|
| 122 |
+
"\n",
|
| 123 |
+
"A single command to launch with `DeepSpeed`, Fully Sharded Data Parallelism, across single and multi CPUs and GPUs, and to train on TPUs[^1] too! \n",
|
| 124 |
+
"\n",
|
| 125 |
+
"[^1]: Without needing to modify your code and create a `_mp_fn`"
|
| 126 |
+
]
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"cell_type": "markdown",
|
| 130 |
+
"id": "c0760c9a-4307-4143-9adc-bf1ce2ed4460",
|
| 131 |
+
"metadata": {},
|
| 132 |
+
"source": [
|
| 133 |
+
"## A Launching Interface\n",
|
| 134 |
+
"\n",
|
| 135 |
+
"Generate a device-specific configuration through `accelerate config`\n",
|
| 136 |
+
"\n",
|
| 137 |
+
""
|
| 138 |
+
]
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"cell_type": "markdown",
|
| 142 |
+
"id": "b0f1dc7a-ec43-48ba-b0a0-1331981733d0",
|
| 143 |
+
"metadata": {},
|
| 144 |
+
"source": [
|
| 145 |
+
"## A Launching Interface\n",
|
| 146 |
+
"\n",
|
| 147 |
+
"Or don't. `accelerate config` doesn't *have* to be done!\n",
|
| 148 |
+
"\n",
|
| 149 |
+
"```bash\n",
|
| 150 |
+
"torchrun --nnodes=1 --nproc_per_node=2 script.py\n",
|
| 151 |
+
"accelerate launch --multi_gpu --nproc_per_node=2 script.py\n",
|
| 152 |
+
"```\n",
|
| 153 |
+
"\n",
|
| 154 |
+
"A quick default configuration can be made too:\n",
|
| 155 |
+
"\n",
|
| 156 |
+
"```bash \n",
|
| 157 |
+
"accelerate config default\n",
|
| 158 |
+
"```"
|
| 159 |
+
]
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"cell_type": "markdown",
|
| 163 |
+
"id": "ff8d2c3d-5a08-4e5b-9896-1a0bcb77b5a6",
|
| 164 |
+
"metadata": {},
|
| 165 |
+
"source": [
|
| 166 |
+
"## A Launching Interface"
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"cell_type": "markdown",
|
| 171 |
+
"id": "a395af44-96f8-4f3a-ac47-3f65a6062d24",
|
| 172 |
+
"metadata": {},
|
| 173 |
+
"source": [
|
| 174 |
+
"With the `notebook_launcher` it's also possible to launch code directly from your Jupyter environment too!"
|
| 175 |
+
]
|
| 176 |
+
},
|
| 177 |
+
{
|
| 178 |
+
"cell_type": "markdown",
|
| 179 |
+
"id": "99b14b46-6be5-4ef4-a3ee-82876b1d7802",
|
| 180 |
+
"metadata": {},
|
| 181 |
+
"source": [
|
| 182 |
+
"```python\n",
|
| 183 |
+
"from accelerate import notebook_launcher\n",
|
| 184 |
+
"notebook_launcher(\n",
|
| 185 |
+
" training_loop_function, \n",
|
| 186 |
+
" args, \n",
|
| 187 |
+
" num_processes=2\n",
|
| 188 |
+
")\n",
|
| 189 |
+
"```"
|
| 190 |
+
]
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"cell_type": "markdown",
|
| 194 |
+
"id": "a50e27a7-4235-4695-bf99-59c0f3d0e451",
|
| 195 |
+
"metadata": {},
|
| 196 |
+
"source": [
|
| 197 |
+
"```python\n",
|
| 198 |
+
"Launching training on 2 GPUs.\n",
|
| 199 |
+
"epoch 0: 88.12\n",
|
| 200 |
+
"epoch 1: 91.73\n",
|
| 201 |
+
"epoch 2: 92.58\n",
|
| 202 |
+
"epoch 3: 93.90\n",
|
| 203 |
+
"epoch 4: 94.71\n",
|
| 204 |
+
"```"
|
| 205 |
+
]
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"cell_type": "markdown",
|
| 209 |
+
"id": "2db4e66d-d8b0-4f3f-9236-e86c1c3ea5d2",
|
| 210 |
+
"metadata": {},
|
| 211 |
+
"source": [
|
| 212 |
+
"# A Training Library\n",
|
| 213 |
+
"\n",
|
| 214 |
+
"Okay, will `accelerate launch` make `do_the_thing.py` use all my GPUs magically?"
|
| 215 |
+
]
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"cell_type": "markdown",
|
| 219 |
+
"id": "1cd093ef-d3ce-4ea4-89a1-be145fbe5cc0",
|
| 220 |
+
"metadata": {},
|
| 221 |
+
"source": [
|
| 222 |
+
"## A Training Library\n",
|
| 223 |
+
"\n",
|
| 224 |
+
"- Just showed that its possible using `accelerate launch` to *launch* a python script in various distributed environments\n",
|
| 225 |
+
"- This does *not* mean that the script will just \"use\" that code and still run on the new compute efficiently.\n",
|
| 226 |
+
"- Training on different computes often means *many* lines of code changed for each specific compute.\n",
|
| 227 |
+
"- 🤗 `accelerate` solves this by ensuring the same code can be ran on a CPU or GPU, multiples, and on TPUs!"
|
| 228 |
+
]
|
| 229 |
+
},
|
| 230 |
+
{
|
| 231 |
+
"cell_type": "markdown",
|
| 232 |
+
"id": "c0b12eb9-feeb-4040-a784-8e78966165be",
|
| 233 |
+
"metadata": {},
|
| 234 |
+
"source": [
|
| 235 |
+
"## A Training Library\n",
|
| 236 |
+
"\n",
|
| 237 |
+
"\n",
|
| 238 |
+
"```{.python}\n",
|
| 239 |
+
"for batch in dataloader:\n",
|
| 240 |
+
" optimizer.zero_grad()\n",
|
| 241 |
+
" inputs, targets = batch\n",
|
| 242 |
+
" inputs = inputs.to(device)\n",
|
| 243 |
+
" targets = targets.to(device)\n",
|
| 244 |
+
" outputs = model(inputs)\n",
|
| 245 |
+
" loss = loss_function(outputs, targets)\n",
|
| 246 |
+
" loss.backward()\n",
|
| 247 |
+
" optimizer.step()\n",
|
| 248 |
+
" scheduler.step()\n",
|
| 249 |
+
"```"
|
| 250 |
+
]
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"cell_type": "markdown",
|
| 254 |
+
"id": "bbb72602-f86f-42f6-ab44-05fbd0dfcecd",
|
| 255 |
+
"metadata": {},
|
| 256 |
+
"source": [
|
| 257 |
+
"## A Training Library {.smaller}"
|
| 258 |
+
]
|
| 259 |
+
},
|
| 260 |
+
{
|
| 261 |
+
"cell_type": "markdown",
|
| 262 |
+
"id": "b5f90b84-fff5-4c14-bde7-d1efbcc37781",
|
| 263 |
+
"metadata": {},
|
| 264 |
+
"source": [
|
| 265 |
+
":::: {.columns}\n",
|
| 266 |
+
"::: {.column width=\"43%\"}\n",
|
| 267 |
+
"<br><br><br>\n",
|
| 268 |
+
"```{.python code-line-numbers=\"5-6,9\"}\n",
|
| 269 |
+
"# For alignment purposes\n",
|
| 270 |
+
"for batch in dataloader:\n",
|
| 271 |
+
" optimizer.zero_grad()\n",
|
| 272 |
+
" inputs, targets = batch\n",
|
| 273 |
+
" inputs = inputs.to(device)\n",
|
| 274 |
+
" targets = targets.to(device)\n",
|
| 275 |
+
" outputs = model(inputs)\n",
|
| 276 |
+
" loss = loss_function(outputs, targets)\n",
|
| 277 |
+
" loss.backward()\n",
|
| 278 |
+
" optimizer.step()\n",
|
| 279 |
+
" scheduler.step()\n",
|
| 280 |
+
"```\n",
|
| 281 |
+
":::\n",
|
| 282 |
+
"::: {.column width=\"57%\"}\n",
|
| 283 |
+
"```{.python code-line-numbers=\"1-7,12-13,16\"}\n",
|
| 284 |
+
"from accelerate import Accelerator\n",
|
| 285 |
+
"accelerator = Accelerator()\n",
|
| 286 |
+
"dataloader, model, optimizer scheduler = (\n",
|
| 287 |
+
" accelerator.prepare(\n",
|
| 288 |
+
" dataloader, model, optimizer, scheduler\n",
|
| 289 |
+
" )\n",
|
| 290 |
+
")\n",
|
| 291 |
+
"\n",
|
| 292 |
+
"for batch in dataloader:\n",
|
| 293 |
+
" optimizer.zero_grad()\n",
|
| 294 |
+
" inputs, targets = batch\n",
|
| 295 |
+
" # inputs = inputs.to(device)\n",
|
| 296 |
+
" # targets = targets.to(device)\n",
|
| 297 |
+
" outputs = model(inputs)\n",
|
| 298 |
+
" loss = loss_function(outputs, targets)\n",
|
| 299 |
+
" accelerator.backward(loss) # loss.backward()\n",
|
| 300 |
+
" optimizer.step()\n",
|
| 301 |
+
" scheduler.step()\n",
|
| 302 |
+
"```\n",
|
| 303 |
+
":::\n",
|
| 304 |
+
"\n",
|
| 305 |
+
"::::"
|
| 306 |
+
]
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"cell_type": "markdown",
|
| 310 |
+
"id": "60c90913-2542-4b1d-8121-b2228c8a2ef7",
|
| 311 |
+
"metadata": {
|
| 312 |
+
"tags": []
|
| 313 |
+
},
|
| 314 |
+
"source": [
|
| 315 |
+
"## A Training Library\n",
|
| 316 |
+
"\n",
|
| 317 |
+
"What all happened in `Accelerator.prepare`?\n",
|
| 318 |
+
"\n",
|
| 319 |
+
"::: {.incremental}\n",
|
| 320 |
+
"1. `Accelerator` looked at the configuration\n",
|
| 321 |
+
"2. The `dataloader` was converted into one that can dispatch each batch onto a seperate GPU\n",
|
| 322 |
+
"3. The `model` was wrapped with the appropriate DDP wrapper from either `torch.distributed` or `torch_xla`\n",
|
| 323 |
+
"4. The `optimizer` and `scheduler` were both converted into an `AcceleratedOptimizer` and `AcceleratedScheduler` which knows how to handle any distributed scenario\n",
|
| 324 |
+
":::"
|
| 325 |
+
]
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"cell_type": "markdown",
|
| 329 |
+
"id": "59400a16-bce7-4a0a-8548-effd3c4c6cae",
|
| 330 |
+
"metadata": {},
|
| 331 |
+
"source": [
|
| 332 |
+
"## A Training Library, Mixed Precision\n",
|
| 333 |
+
"\n",
|
| 334 |
+
"🤗 `accelerate` also supports *automatic mixed precision*. \n",
|
| 335 |
+
"\n",
|
| 336 |
+
"Through a single flag to the `Accelerator` object when calling `accelerator.backward()` the mixed precision of your choosing (such as `bf16` or `fp16`) will be applied:\n",
|
| 337 |
+
"\n",
|
| 338 |
+
"```{.python code-line-numbers=\"2,9\"}\n",
|
| 339 |
+
"from accelerate import Accelerator\n",
|
| 340 |
+
"accelerator = Accelerator(mixed_precision=\"fp16\")\n",
|
| 341 |
+
"...\n",
|
| 342 |
+
"for batch in dataloader:\n",
|
| 343 |
+
" optimizer.zero_grad()\n",
|
| 344 |
+
" inputs, targets = batch\n",
|
| 345 |
+
" outputs = model(inputs)\n",
|
| 346 |
+
" loss = loss_function(outputs, targets)\n",
|
| 347 |
+
" accelerator.backward(loss)\n",
|
| 348 |
+
" optimizer.step()\n",
|
| 349 |
+
" scheduler.step()\n",
|
| 350 |
+
"```"
|
| 351 |
+
]
|
| 352 |
+
},
|
| 353 |
+
{
|
| 354 |
+
"cell_type": "markdown",
|
| 355 |
+
"id": "fde7ae10-4fbd-4e25-8f5d-9d47c849966d",
|
| 356 |
+
"metadata": {},
|
| 357 |
+
"source": [
|
| 358 |
+
"## A Training Library, Gradient Accumulation\n",
|
| 359 |
+
"\n",
|
| 360 |
+
"Gradient accumulation in distributed setups often need extra care to ensure gradients are aligned when they need to be and the backward pass is computationally efficient.\n",
|
| 361 |
+
"\n",
|
| 362 |
+
"🤗 `accelerate` can just easily handle this for you:\n",
|
| 363 |
+
"\n",
|
| 364 |
+
"```{.python code-line-numbers=\"2,5\"}\n",
|
| 365 |
+
"from accelerate import Accelerator\n",
|
| 366 |
+
"accelerator = Accelerator(gradient_accumulation_steps=4)\n",
|
| 367 |
+
"...\n",
|
| 368 |
+
"for batch in dataloader:\n",
|
| 369 |
+
" with accelerator.accumulate(model)\n",
|
| 370 |
+
" optimizer.zero_grad()\n",
|
| 371 |
+
" inputs, targets = batch\n",
|
| 372 |
+
" outputs = model(inputs)\n",
|
| 373 |
+
" loss = loss_function(outputs, targets)\n",
|
| 374 |
+
" accelerator.backward(loss)\n",
|
| 375 |
+
" optimizer.step()\n",
|
| 376 |
+
" scheduler.step()\n",
|
| 377 |
+
"```"
|
| 378 |
+
]
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"cell_type": "markdown",
|
| 382 |
+
"id": "13f2d1e7-1e50-4a28-b7b4-55e09e15c176",
|
| 383 |
+
"metadata": {},
|
| 384 |
+
"source": [
|
| 385 |
+
"## A Training Library, Gradient Accumulation\n",
|
| 386 |
+
"\n",
|
| 387 |
+
"```{.python code-line-numbers=\"5-7,10,11,12,15\"}\n",
|
| 388 |
+
"ddp_model, dataloader = accelerator.prepare(model, dataloader)\n",
|
| 389 |
+
"\n",
|
| 390 |
+
"for index, batch in enumerate(dataloader):\n",
|
| 391 |
+
" inputs, targets = batch\n",
|
| 392 |
+
" if index != (len(dataloader)-1) or (index % 4) != 0:\n",
|
| 393 |
+
" # Gradients don't sync\n",
|
| 394 |
+
" with accelerator.no_sync(model):\n",
|
| 395 |
+
" outputs = ddp_model(inputs)\n",
|
| 396 |
+
" loss = loss_func(outputs, targets)\n",
|
| 397 |
+
" accelerator.backward(loss)\n",
|
| 398 |
+
" else:\n",
|
| 399 |
+
" # Gradients finally sync\n",
|
| 400 |
+
" outputs = ddp_model(inputs)\n",
|
| 401 |
+
" loss = loss_func(outputs)\n",
|
| 402 |
+
" accelerator.backward(loss)\n",
|
| 403 |
+
"```"
|
| 404 |
+
]
|
| 405 |
+
},
|
| 406 |
+
{
|
| 407 |
+
"cell_type": "markdown",
|
| 408 |
+
"id": "93575b12-8000-4e8c-81fb-74af415fd76b",
|
| 409 |
+
"metadata": {},
|
| 410 |
+
"source": [
|
| 411 |
+
"# Big Model Inference\n",
|
| 412 |
+
"\n",
|
| 413 |
+
"Stable Diffusion taking the world by storm"
|
| 414 |
+
]
|
| 415 |
+
},
|
| 416 |
+
{
|
| 417 |
+
"cell_type": "markdown",
|
| 418 |
+
"id": "b3026c5d-c051-4eac-a4be-af6559294225",
|
| 419 |
+
"metadata": {},
|
| 420 |
+
"source": [
|
| 421 |
+
"## Bigger Models == Higher Compute\n",
|
| 422 |
+
"\n",
|
| 423 |
+
"As more large models were being released, Hugging Face quickly realized there must be a way to continue our decentralization of Machine Learning and have the day-to-day programmer be able to leverage these big models.\n",
|
| 424 |
+
"\n",
|
| 425 |
+
"Born out of this effort by Sylvain Gugger: \n",
|
| 426 |
+
"\n",
|
| 427 |
+
"🤗 Accelerate: Big Model Inference."
|
| 428 |
+
]
|
| 429 |
+
},
|
| 430 |
+
{
|
| 431 |
+
"cell_type": "markdown",
|
| 432 |
+
"id": "303925bf-ce22-4e71-a239-69eb419d54d3",
|
| 433 |
+
"metadata": {},
|
| 434 |
+
"source": [
|
| 435 |
+
"## The Basic Premise\n",
|
| 436 |
+
"\n",
|
| 437 |
+
"::: {.incremental}\n",
|
| 438 |
+
"* In PyTorch, there exists the `meta` device. \n",
|
| 439 |
+
"\n",
|
| 440 |
+
"* Super small footprint to load in huge models quickly by not loading in their weights immediatly.\n",
|
| 441 |
+
"\n",
|
| 442 |
+
"* As an input gets passed through each layer, we can load and unload *parts* of the PyTorch model quickly so that only a small portion of the big model is loaded in at a single time.\n",
|
| 443 |
+
"\n",
|
| 444 |
+
"* The end result? Stable Diffusion v1 can be ran on < 800mb of vRAM\n",
|
| 445 |
+
":::"
|
| 446 |
+
]
|
| 447 |
+
},
|
| 448 |
+
{
|
| 449 |
+
"cell_type": "markdown",
|
| 450 |
+
"id": "c6eef166-c64b-4229-9575-b197c3c03c59",
|
| 451 |
+
"metadata": {},
|
| 452 |
+
"source": [
|
| 453 |
+
"## The Code\n",
|
| 454 |
+
"\n",
|
| 455 |
+
"Generally you start with something like so:\n",
|
| 456 |
+
"\n",
|
| 457 |
+
"```python\n",
|
| 458 |
+
"import torch\n",
|
| 459 |
+
"\n",
|
| 460 |
+
"my_model = ModelClass(...)\n",
|
| 461 |
+
"state_dict = torch.load(checkpoint_file)\n",
|
| 462 |
+
"my_model.load_state_dict(state_dict)\n",
|
| 463 |
+
"```\n",
|
| 464 |
+
"\n",
|
| 465 |
+
"But this has issues:\n",
|
| 466 |
+
"\n",
|
| 467 |
+
"1. The full version of the model is loaded at `3`\n",
|
| 468 |
+
"2. Another version of the model is loaded into memory at `4`\n",
|
| 469 |
+
"\n",
|
| 470 |
+
"If a 6 *billion* parameter model is being loaded, each model class has a dictionary of 24GB so 48GB of vRAM is needed"
|
| 471 |
+
]
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"cell_type": "markdown",
|
| 475 |
+
"id": "53651488-7303-4aa3-83bb-ea7331938a01",
|
| 476 |
+
"metadata": {},
|
| 477 |
+
"source": [
|
| 478 |
+
"## Empty Model Weights\n",
|
| 479 |
+
"\n",
|
| 480 |
+
"We can fix step 1 by loading in an empty model skeleton at first:\n",
|
| 481 |
+
"\n",
|
| 482 |
+
"```{.python code-line-numbers=\"2,4-5\"}\n",
|
| 483 |
+
"from accelerate import init_empty_weights\n",
|
| 484 |
+
"\n",
|
| 485 |
+
"with init_empty_weights():\n",
|
| 486 |
+
" my_model = ModelClass(...)\n",
|
| 487 |
+
"state_dict = torch.load(checkpoint_file)\n",
|
| 488 |
+
"my_model.load_state_dict(state_dict)\n",
|
| 489 |
+
"```\n",
|
| 490 |
+
"\n",
|
| 491 |
+
"::: {.callout-important appearance=\"default\"}\n",
|
| 492 |
+
"## This code will not run\n",
|
| 493 |
+
"It is likely that just calling `my_model(x)` will fail as not all tensor operations are supported on the `meta` device.\n",
|
| 494 |
+
":::"
|
| 495 |
+
]
|
| 496 |
+
},
|
| 497 |
+
{
|
| 498 |
+
"cell_type": "markdown",
|
| 499 |
+
"id": "94a2b99a-b154-4cc3-93fd-431ba78ecfdf",
|
| 500 |
+
"metadata": {},
|
| 501 |
+
"source": [
|
| 502 |
+
"## Sharded Checkpoints - The Concept\n",
|
| 503 |
+
"\n",
|
| 504 |
+
"The next step is to have \"Sharded Checkpoints\" saved for your model.\n",
|
| 505 |
+
"\n",
|
| 506 |
+
"Basically smaller chunks of your model weights stored that can be brought in at any particular time. \n",
|
| 507 |
+
"\n",
|
| 508 |
+
"This reduces the amount of memory step 2 takes in since we can just load in a \"chunk\" of the model at a time, then swap it out for a new chunk through PyTorch hooks"
|
| 509 |
+
]
|
| 510 |
+
},
|
| 511 |
+
{
|
| 512 |
+
"cell_type": "markdown",
|
| 513 |
+
"id": "11a55882-8bab-4d6b-b8ca-bfc886351156",
|
| 514 |
+
"metadata": {},
|
| 515 |
+
"source": [
|
| 516 |
+
"## Sharded Checkpoints - The Code\n",
|
| 517 |
+
"\n",
|
| 518 |
+
"```{.python code-line-numbers=\"1,6-8\"}\n",
|
| 519 |
+
"from accelerate import init_empty_weights, load_checkpoint_and_dispatch\n",
|
| 520 |
+
"\n",
|
| 521 |
+
"with init_empty_weights():\n",
|
| 522 |
+
" my_model = ModelClass(...)\n",
|
| 523 |
+
"\n",
|
| 524 |
+
"my_model = load_checkpoint_and_dispatch(\n",
|
| 525 |
+
" y_model, \"sharted-weights\", device_map=\"auto\"\n",
|
| 526 |
+
")\n",
|
| 527 |
+
"```\n",
|
| 528 |
+
"`device_map=\"auto\"` will tell 🤗 Accelerate that it should determine where to put each layer of the model:\n",
|
| 529 |
+
"\n",
|
| 530 |
+
"1. Maximum space on the GPU(s)\n",
|
| 531 |
+
"2. Maximum space on the CPU(s)\n",
|
| 532 |
+
"3. Utilize disk space through memory-mapped tensors"
|
| 533 |
+
]
|
| 534 |
+
},
|
| 535 |
+
{
|
| 536 |
+
"cell_type": "markdown",
|
| 537 |
+
"id": "6796c0ac-77e4-4f88-b01a-25f428b29a87",
|
| 538 |
+
"metadata": {},
|
| 539 |
+
"source": [
|
| 540 |
+
"## Big Model Inference Put Together\n",
|
| 541 |
+
"\n",
|
| 542 |
+
"```{.python}\n",
|
| 543 |
+
"from accelerate import init_empty_weights, load_checkpoint_and_dispatch\n",
|
| 544 |
+
"\n",
|
| 545 |
+
"with init_empty_weights():\n",
|
| 546 |
+
" my_model = ModelClass(...)\n",
|
| 547 |
+
"\n",
|
| 548 |
+
"my_model = load_checkpoint_and_dispatch(\n",
|
| 549 |
+
" y_model, \"sharted-weights\", device_map=\"auto\"\n",
|
| 550 |
+
")\n",
|
| 551 |
+
"my_model.eval()\n",
|
| 552 |
+
"\n",
|
| 553 |
+
"for batch in dataloader:\n",
|
| 554 |
+
" output = my_model(batch)\n",
|
| 555 |
+
"```"
|
| 556 |
+
]
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"cell_type": "markdown",
|
| 560 |
+
"id": "6f5122b2-f4fe-4237-aff2-d2a69f85b692",
|
| 561 |
+
"metadata": {},
|
| 562 |
+
"source": [
|
| 563 |
+
"# Thanks for Listening!"
|
| 564 |
+
]
|
| 565 |
+
},
|
| 566 |
+
{
|
| 567 |
+
"cell_type": "markdown",
|
| 568 |
+
"id": "52f29e81-2e55-42d0-8e9d-83e692714909",
|
| 569 |
+
"metadata": {},
|
| 570 |
+
"source": [
|
| 571 |
+
"## Some Handy Resources\n",
|
| 572 |
+
"\n",
|
| 573 |
+
"- [🤗 Accelerate documentation](https://hf.co/docs/accelerate)\n",
|
| 574 |
+
"- [Launching distributed code](https://huggingface.co/docs/accelerate/basic_tutorials/launch)\n",
|
| 575 |
+
"- [Distributed code and Jupyter Notebooks](https://huggingface.co/docs/accelerate/basic_tutorials/notebook)\n",
|
| 576 |
+
"- [Migrating to 🤗 Accelerate easily](https://huggingface.co/docs/accelerate/basic_tutorials/migration)\n",
|
| 577 |
+
"- [Big Model Inference tutorial](https://huggingface.co/docs/accelerate/usage_guides/big_modeling)\n",
|
| 578 |
+
"- [DeepSpeed and 🤗 Accelerate](https://huggingface.co/docs/accelerate/usage_guides/deepspeed)\n",
|
| 579 |
+
"- [Fully Sharded Data Parallelism and 🤗 Accelerate](https://huggingface.co/docs/accelerate/usage_guides/fsdp)"
|
| 580 |
+
]
|
| 581 |
+
},
|
| 582 |
+
{
|
| 583 |
+
"cell_type": "code",
|
| 584 |
+
"execution_count": null,
|
| 585 |
+
"id": "b9f6a92d-1275-470b-aa27-ff2be450d616",
|
| 586 |
+
"metadata": {},
|
| 587 |
+
"outputs": [],
|
| 588 |
+
"source": []
|
| 589 |
+
}
|
| 590 |
+
],
|
| 591 |
+
"metadata": {
|
| 592 |
+
"kernelspec": {
|
| 593 |
+
"display_name": "Python 3 (ipykernel)",
|
| 594 |
+
"language": "python",
|
| 595 |
+
"name": "python3"
|
| 596 |
+
},
|
| 597 |
+
"language_info": {
|
| 598 |
+
"codemirror_mode": {
|
| 599 |
+
"name": "ipython",
|
| 600 |
+
"version": 3
|
| 601 |
+
},
|
| 602 |
+
"file_extension": ".py",
|
| 603 |
+
"mimetype": "text/x-python",
|
| 604 |
+
"name": "python",
|
| 605 |
+
"nbconvert_exporter": "python",
|
| 606 |
+
"pygments_lexer": "ipython3",
|
| 607 |
+
"version": "3.8.10"
|
| 608 |
+
}
|
| 609 |
+
},
|
| 610 |
+
"nbformat": 4,
|
| 611 |
+
"nbformat_minor": 5
|
| 612 |
+
}
|