Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn.functional as F | |
| from transformers import AutoTokenizer, AutoModel | |
| def forward_process(batch, prompt_index, mask_id): | |
| b, l = batch.shape | |
| target_len = (l - prompt_index.sum()).item() | |
| k = torch.randint(1, target_len + 1, (), device=batch.device) | |
| x = torch.round(torch.linspace(float(k), k + (b - 1) * (target_len / b), steps=b, device=batch.device)).long() | |
| x = ((x - 1) % target_len) + 1 | |
| assert x.min() >= 1 and x.max() <= target_len | |
| indices = torch.arange(target_len, device=batch.device).repeat(b, 1) | |
| is_mask = indices < x.unsqueeze(1) | |
| for i in range(b): | |
| is_mask[i] = is_mask[i][torch.randperm(target_len)] | |
| is_mask = torch.cat((torch.zeros(b, prompt_index.sum(), dtype=torch.bool, device=batch.device), is_mask), dim=1) | |
| noisy_batch = torch.where(is_mask, mask_id, batch) | |
| # Return the masked batch and the mask ratio | |
| return noisy_batch, (x / target_len).unsqueeze(1).repeat(1, l) | |
| def get_logits(model, batch, prompt_index, cfg_scale, mask_id): | |
| if cfg_scale > 0.: | |
| assert len(prompt_index) == batch.shape[1] | |
| prompt_index = prompt_index.unsqueeze(0).repeat(batch.shape[0], 1) | |
| un_batch = batch.clone() | |
| un_batch[prompt_index] = mask_id | |
| batch = torch.cat([batch, un_batch]) | |
| input = batch | |
| logits = model(input).logits | |
| if cfg_scale > 0.: | |
| logits, un_logits = torch.chunk(logits, 2, dim=0) | |
| logits = un_logits + (cfg_scale + 1) * (logits - un_logits) | |
| return logits | |
| def get_log_likelihood(model, prompt, answer, mc_num=128, batch_size=16, cfg_scale=0., mask_id=126336): | |
| ''' | |
| Args: | |
| model: Mask predictor. | |
| prompt: A tensor of shape (l1). | |
| answer: A tensor of shape (l2). | |
| mc_num: Monte Carlo estimation times. | |
| As detailed in Appendix B.5. Since MMLU, CMMLU, and C-EVAL only require the likelihood of a single token, a | |
| single Monte Carlo estimate is sufficient for these benchmarks. For all other benchmarks, we find that 128 | |
| Monte Carlo samples are adequate to produce stable results. | |
| batch_size: Mini batch size. | |
| cfg_scale: Unsupervised classifier-free guidance scale. | |
| mask_id: The toke id of [MASK] is 126336. | |
| ''' | |
| seq = torch.concatenate([prompt, answer])[None, :] | |
| seq = seq.repeat((batch_size, 1)).to(model.device) | |
| prompt_index = torch.arange(seq.shape[1], device=model.device) < len(prompt) | |
| loss_ = [] | |
| for _ in range(mc_num // batch_size): | |
| perturbed_seq, p_mask = forward_process(seq, prompt_index, mask_id) | |
| mask_index = perturbed_seq == mask_id | |
| logits = get_logits(model, perturbed_seq, prompt_index, cfg_scale, mask_id) | |
| loss = F.cross_entropy(logits[mask_index], seq[mask_index], reduction='none') / p_mask[mask_index] | |
| loss = loss.sum() / batch_size | |
| loss_.append(loss.item()) | |
| return - sum(loss_) / len(loss_) | |
| def main(): | |
| device = 'cuda' | |
| model = AutoModel.from_pretrained('GSAI-ML/LLaDA-8B-Base', trust_remote_code=True, torch_dtype=torch.bfloat16).to(device).eval() | |
| tokenizer = AutoTokenizer.from_pretrained('GSAI-ML/LLaDA-8B-Base', trust_remote_code=True) | |
| # this prompt and answer is from Hellaswag dataset | |
| prompt = 'Roof shingle removal: A man is sitting on a roof. He' | |
| answer = ' is using wrap to wrap a pair of skis.' | |
| prompt = torch.tensor(tokenizer(prompt)['input_ids']).to(device) | |
| answer = torch.tensor(tokenizer(answer)['input_ids']).to(device) | |
| print(get_log_likelihood(model, prompt, answer, mc_num=128)) | |
| if __name__ == '__main__': | |
| main() |