Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import torch
|
|
| 2 |
import numpy as np
|
| 3 |
import gradio as gr
|
| 4 |
import spaces
|
|
|
|
| 5 |
from transformers import AutoTokenizer, AutoModel
|
| 6 |
import time
|
| 7 |
import re
|
|
@@ -57,13 +58,56 @@ def format_chat_history(history):
|
|
| 57 |
|
| 58 |
return messages
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
@spaces.GPU
|
| 61 |
-
def generate_response_with_visualization(model, tokenizer, device, messages, gen_length=64, steps=32,
|
|
|
|
|
|
|
| 62 |
"""
|
| 63 |
-
Generate text with LLaDA model with visualization
|
| 64 |
|
| 65 |
Args:
|
| 66 |
messages: List of message dictionaries with 'role' and 'content'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
Returns:
|
| 69 |
List of visualization states showing the progression and final text
|
|
@@ -92,10 +136,10 @@ def generate_response_with_visualization(model, tokenizer, device, messages, gen
|
|
| 92 |
x = torch.full((1, prompt_length + gen_length), MASK_ID, dtype=torch.long).to(device)
|
| 93 |
x[:, :prompt_length] = input_ids.clone()
|
| 94 |
|
| 95 |
-
# Initialize visualization states for
|
| 96 |
visualization_states = []
|
| 97 |
|
| 98 |
-
# Add initial state (all masked)
|
| 99 |
initial_state = [(MASK_TOKEN, "#444444") for _ in range(gen_length)]
|
| 100 |
visualization_states.append(initial_state)
|
| 101 |
|
|
@@ -105,114 +149,144 @@ def generate_response_with_visualization(model, tokenizer, device, messages, gen
|
|
| 105 |
if absolute_pos < x.shape[1]:
|
| 106 |
x[:, absolute_pos] = token_id
|
| 107 |
|
| 108 |
-
#
|
| 109 |
-
|
| 110 |
|
| 111 |
-
#
|
| 112 |
-
|
|
|
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
probs = torch.softmax(logits, dim=-1)
|
| 133 |
-
top_probs = torch.max(probs, dim=-1)[0]
|
| 134 |
-
|
| 135 |
-
# Apply the predictions where we have masks
|
| 136 |
-
x_old = x.clone()
|
| 137 |
-
x = torch.where(mask_indices, x0, x)
|
| 138 |
|
| 139 |
-
#
|
| 140 |
-
|
| 141 |
-
current_t_value = float(t)
|
| 142 |
-
next_t_value = float(s)
|
| 143 |
|
| 144 |
-
#
|
| 145 |
-
|
| 146 |
-
|
| 147 |
|
| 148 |
-
#
|
| 149 |
-
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
| 154 |
|
| 155 |
-
#
|
| 156 |
-
|
|
|
|
| 157 |
|
| 158 |
-
#
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
-
#
|
| 162 |
-
|
| 163 |
-
|
| 164 |
|
| 165 |
-
#
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
# Create visualization state ONLY for the response part
|
| 175 |
-
current_state = []
|
| 176 |
-
|
| 177 |
-
# Update which tokens are newly revealed in this step
|
| 178 |
-
for i in range(gen_length):
|
| 179 |
-
pos = prompt_length + i # Absolute position in the sequence
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
elif confidence < 0.7:
|
| 194 |
-
color = "#FFAA33" # Orange
|
| 195 |
-
else:
|
| 196 |
-
color = "#66CC66" # Light green
|
| 197 |
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
# Extract final text (just the assistant's response)
|
| 209 |
response_tokens = x[0, prompt_length:]
|
| 210 |
-
response_text = tokenizer.decode(response_tokens, skip_special_tokens=True)
|
| 211 |
-
|
| 212 |
-
# Clean the response text
|
| 213 |
final_text = tokenizer.decode(response_tokens,
|
| 214 |
-
|
| 215 |
-
|
| 216 |
|
| 217 |
return visualization_states, final_text
|
| 218 |
|
|
@@ -222,15 +296,13 @@ button{height: 60px}
|
|
| 222 |
'''
|
| 223 |
def create_chatbot_demo():
|
| 224 |
with gr.Blocks(css=css) as demo:
|
| 225 |
-
gr.Markdown("# LLaDA - Large Language Diffusion Model
|
| 226 |
gr.Markdown("[model](https://huggingface.co/GSAI-ML/LLaDA-8B-Instruct), [project page](https://ml-gsai.github.io/LLaDA-demo/)")
|
| 227 |
|
| 228 |
-
# STATE MANAGEMENT
|
| 229 |
-
# We use a dedicated state to track the full conversation history
|
| 230 |
chat_history = gr.State([])
|
| 231 |
|
| 232 |
# UI COMPONENTS
|
| 233 |
-
# Chatbot for displaying messages
|
| 234 |
with gr.Row():
|
| 235 |
with gr.Column(scale=3):
|
| 236 |
chatbot_ui = gr.Chatbot(label="Conversation", height=500)
|
|
@@ -257,7 +329,8 @@ def create_chatbot_demo():
|
|
| 257 |
combine_adjacent=False,
|
| 258 |
show_legend=True,
|
| 259 |
)
|
| 260 |
-
|
|
|
|
| 261 |
with gr.Accordion("Generation Settings", open=False):
|
| 262 |
with gr.Row():
|
| 263 |
gen_length = gr.Slider(
|
|
@@ -268,14 +341,32 @@ def create_chatbot_demo():
|
|
| 268 |
minimum=8, maximum=64, value=32, step=4,
|
| 269 |
label="Denoising Steps"
|
| 270 |
)
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
-
# Current response text box
|
| 279 |
current_response = gr.Textbox(
|
| 280 |
label="Current Response",
|
| 281 |
placeholder="The assistant's response will appear here...",
|
|
@@ -313,7 +404,7 @@ def create_chatbot_demo():
|
|
| 313 |
# Return immediately to update UI with user message
|
| 314 |
return history, history_for_display, message_out, [], ""
|
| 315 |
|
| 316 |
-
def bot_response(history, gen_length, steps, constraints, delay):
|
| 317 |
"""Generate bot response for the latest message"""
|
| 318 |
if not history:
|
| 319 |
return history, [], ""
|
|
@@ -337,7 +428,11 @@ def create_chatbot_demo():
|
|
| 337 |
messages,
|
| 338 |
gen_length=gen_length,
|
| 339 |
steps=steps,
|
| 340 |
-
constraints=parsed_constraints
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
)
|
| 342 |
|
| 343 |
# Update history with the assistant's response
|
|
@@ -393,13 +488,21 @@ def create_chatbot_demo():
|
|
| 393 |
# This happens after the user message is displayed
|
| 394 |
msg_submit.then(
|
| 395 |
fn=bot_response,
|
| 396 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
outputs=[chatbot_ui, output_vis, current_response]
|
| 398 |
)
|
| 399 |
|
| 400 |
send_click.then(
|
| 401 |
fn=bot_response,
|
| 402 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
outputs=[chatbot_ui, output_vis, current_response]
|
| 404 |
)
|
| 405 |
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import gradio as gr
|
| 4 |
import spaces
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
from transformers import AutoTokenizer, AutoModel
|
| 7 |
import time
|
| 8 |
import re
|
|
|
|
| 58 |
|
| 59 |
return messages
|
| 60 |
|
| 61 |
+
def add_gumbel_noise(logits, temperature):
|
| 62 |
+
'''
|
| 63 |
+
The Gumbel max is a method for sampling categorical distributions.
|
| 64 |
+
According to arXiv:2409.02908, for MDM, low-precision Gumbel Max improves perplexity score but reduces generation quality.
|
| 65 |
+
Thus, we use float64.
|
| 66 |
+
'''
|
| 67 |
+
if temperature <= 0:
|
| 68 |
+
return logits
|
| 69 |
+
|
| 70 |
+
logits = logits.to(torch.float64)
|
| 71 |
+
noise = torch.rand_like(logits, dtype=torch.float64)
|
| 72 |
+
gumbel_noise = (- torch.log(noise)) ** temperature
|
| 73 |
+
return logits.exp() / gumbel_noise
|
| 74 |
+
|
| 75 |
+
def get_num_transfer_tokens(mask_index, steps):
|
| 76 |
+
'''
|
| 77 |
+
In the reverse process, the interval [0, 1] is uniformly discretized into steps intervals.
|
| 78 |
+
Furthermore, because LLaDA employs a linear noise schedule (as defined in Eq. (8)),
|
| 79 |
+
the expected number of tokens transitioned at each step should be consistent.
|
| 80 |
+
|
| 81 |
+
This function is designed to precompute the number of tokens that need to be transitioned at each step.
|
| 82 |
+
'''
|
| 83 |
+
mask_num = mask_index.sum(dim=1, keepdim=True)
|
| 84 |
+
|
| 85 |
+
base = mask_num // steps
|
| 86 |
+
remainder = mask_num % steps
|
| 87 |
+
|
| 88 |
+
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.int64) + base
|
| 89 |
+
|
| 90 |
+
for i in range(mask_num.size(0)):
|
| 91 |
+
num_transfer_tokens[i, :remainder[i]] += 1
|
| 92 |
+
|
| 93 |
+
return num_transfer_tokens
|
| 94 |
+
|
| 95 |
@spaces.GPU
|
| 96 |
+
def generate_response_with_visualization(model, tokenizer, device, messages, gen_length=64, steps=32,
|
| 97 |
+
constraints=None, temperature=0.0, cfg_scale=0.0, block_length=32,
|
| 98 |
+
remasking='low_confidence'):
|
| 99 |
"""
|
| 100 |
+
Generate text with LLaDA model with visualization using the same sampling as in generate.py
|
| 101 |
|
| 102 |
Args:
|
| 103 |
messages: List of message dictionaries with 'role' and 'content'
|
| 104 |
+
gen_length: Length of text to generate
|
| 105 |
+
steps: Number of denoising steps
|
| 106 |
+
constraints: Dictionary mapping positions to words
|
| 107 |
+
temperature: Sampling temperature
|
| 108 |
+
cfg_scale: Classifier-free guidance scale
|
| 109 |
+
block_length: Block length for semi-autoregressive generation
|
| 110 |
+
remasking: Remasking strategy ('low_confidence' or 'random')
|
| 111 |
|
| 112 |
Returns:
|
| 113 |
List of visualization states showing the progression and final text
|
|
|
|
| 136 |
x = torch.full((1, prompt_length + gen_length), MASK_ID, dtype=torch.long).to(device)
|
| 137 |
x[:, :prompt_length] = input_ids.clone()
|
| 138 |
|
| 139 |
+
# Initialize visualization states for the response part
|
| 140 |
visualization_states = []
|
| 141 |
|
| 142 |
+
# Add initial state (all masked)
|
| 143 |
initial_state = [(MASK_TOKEN, "#444444") for _ in range(gen_length)]
|
| 144 |
visualization_states.append(initial_state)
|
| 145 |
|
|
|
|
| 149 |
if absolute_pos < x.shape[1]:
|
| 150 |
x[:, absolute_pos] = token_id
|
| 151 |
|
| 152 |
+
# Mark prompt positions to exclude them from masking during classifier-free guidance
|
| 153 |
+
prompt_index = (x != MASK_ID)
|
| 154 |
|
| 155 |
+
# Ensure block_length is valid
|
| 156 |
+
if block_length > gen_length:
|
| 157 |
+
block_length = gen_length
|
| 158 |
|
| 159 |
+
# Calculate number of blocks
|
| 160 |
+
num_blocks = gen_length // block_length
|
| 161 |
+
if gen_length % block_length != 0:
|
| 162 |
+
num_blocks += 1
|
| 163 |
+
|
| 164 |
+
# Adjust steps per block
|
| 165 |
+
steps_per_block = steps // num_blocks
|
| 166 |
+
if steps_per_block < 1:
|
| 167 |
+
steps_per_block = 1
|
| 168 |
+
|
| 169 |
+
# Track the current state of x for visualization
|
| 170 |
+
current_x = x.clone()
|
| 171 |
+
|
| 172 |
+
# Process each block
|
| 173 |
+
for num_block in range(num_blocks):
|
| 174 |
+
# Calculate the start and end indices for the current block
|
| 175 |
+
block_start = prompt_length + num_block * block_length
|
| 176 |
+
block_end = min(prompt_length + (num_block + 1) * block_length, x.shape[1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
+
# Get mask indices for the current block
|
| 179 |
+
block_mask_index = (x[:, block_start:block_end] == MASK_ID)
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
# Skip if no masks in this block
|
| 182 |
+
if not block_mask_index.any():
|
| 183 |
+
continue
|
| 184 |
|
| 185 |
+
# Calculate number of tokens to unmask at each step
|
| 186 |
+
num_transfer_tokens = get_num_transfer_tokens(block_mask_index, steps_per_block)
|
| 187 |
|
| 188 |
+
# Process each step
|
| 189 |
+
for i in range(steps_per_block):
|
| 190 |
+
# Get all mask positions in the current sequence
|
| 191 |
+
mask_index = (x == MASK_ID)
|
| 192 |
|
| 193 |
+
# Skip if no masks
|
| 194 |
+
if not mask_index.any():
|
| 195 |
+
break
|
| 196 |
|
| 197 |
+
# Apply classifier-free guidance if enabled
|
| 198 |
+
if cfg_scale > 0.0:
|
| 199 |
+
un_x = x.clone()
|
| 200 |
+
un_x[prompt_index] = MASK_ID
|
| 201 |
+
x_ = torch.cat([x, un_x], dim=0)
|
| 202 |
+
logits = model(x_).logits
|
| 203 |
+
logits, un_logits = torch.chunk(logits, 2, dim=0)
|
| 204 |
+
logits = un_logits + (cfg_scale + 1) * (logits - un_logits)
|
| 205 |
+
else:
|
| 206 |
+
logits = model(x).logits
|
| 207 |
|
| 208 |
+
# Apply Gumbel noise for sampling
|
| 209 |
+
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
|
| 210 |
+
x0 = torch.argmax(logits_with_noise, dim=-1)
|
| 211 |
|
| 212 |
+
# Calculate confidence scores for remasking
|
| 213 |
+
if remasking == 'low_confidence':
|
| 214 |
+
p = F.softmax(logits.to(torch.float64), dim=-1)
|
| 215 |
+
x0_p = torch.squeeze(
|
| 216 |
+
torch.gather(p, dim=-1, index=torch.unsqueeze(x0, -1)), -1) # b, l
|
| 217 |
+
elif remasking == 'random':
|
| 218 |
+
x0_p = torch.rand((x0.shape[0], x0.shape[1]), device=x0.device)
|
| 219 |
+
else:
|
| 220 |
+
raise NotImplementedError(f"Remasking strategy '{remasking}' not implemented")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
+
# Don't consider positions beyond the current block
|
| 223 |
+
x0_p[:, block_end:] = -float('inf')
|
| 224 |
+
|
| 225 |
+
# Apply predictions where we have masks
|
| 226 |
+
old_x = x.clone()
|
| 227 |
+
x0 = torch.where(mask_index, x0, x)
|
| 228 |
+
confidence = torch.where(mask_index, x0_p, -float('inf'))
|
| 229 |
+
|
| 230 |
+
# Select tokens to unmask based on confidence
|
| 231 |
+
transfer_index = torch.zeros_like(x0, dtype=torch.bool, device=x0.device)
|
| 232 |
+
for j in range(confidence.shape[0]):
|
| 233 |
+
# Only consider positions within the current block for unmasking
|
| 234 |
+
block_confidence = confidence[j, block_start:block_end]
|
| 235 |
+
if i < steps_per_block - 1: # Not the last step
|
| 236 |
+
# Take top-k confidences
|
| 237 |
+
_, select_indices = torch.topk(block_confidence,
|
| 238 |
+
k=min(num_transfer_tokens[j, i].item(),
|
| 239 |
+
block_confidence.numel()))
|
| 240 |
+
# Adjust indices to global positions
|
| 241 |
+
select_indices = select_indices + block_start
|
| 242 |
+
transfer_index[j, select_indices] = True
|
| 243 |
+
else: # Last step - unmask everything remaining
|
| 244 |
+
transfer_index[j, block_start:block_end] = mask_index[j, block_start:block_end]
|
| 245 |
+
|
| 246 |
+
# Apply the selected tokens
|
| 247 |
+
x = torch.where(transfer_index, x0, x)
|
| 248 |
+
|
| 249 |
+
# Ensure constraints are maintained
|
| 250 |
+
for pos, token_id in processed_constraints.items():
|
| 251 |
+
absolute_pos = prompt_length + pos
|
| 252 |
+
if absolute_pos < x.shape[1]:
|
| 253 |
+
x[:, absolute_pos] = token_id
|
| 254 |
+
|
| 255 |
+
# Create visualization state only for the response part
|
| 256 |
+
current_state = []
|
| 257 |
+
for i in range(gen_length):
|
| 258 |
+
pos = prompt_length + i # Absolute position in the sequence
|
| 259 |
|
| 260 |
+
if x[0, pos] == MASK_ID:
|
| 261 |
+
# Still masked
|
| 262 |
+
current_state.append((MASK_TOKEN, "#444444")) # Dark gray for masks
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
+
elif old_x[0, pos] == MASK_ID:
|
| 265 |
+
# Newly revealed in this step
|
| 266 |
+
token = tokenizer.decode([x[0, pos].item()], skip_special_tokens=True)
|
| 267 |
+
# Color based on confidence
|
| 268 |
+
confidence = float(x0_p[0, pos].cpu())
|
| 269 |
+
if confidence < 0.3:
|
| 270 |
+
color = "#FF6666" # Light red
|
| 271 |
+
elif confidence < 0.7:
|
| 272 |
+
color = "#FFAA33" # Orange
|
| 273 |
+
else:
|
| 274 |
+
color = "#66CC66" # Light green
|
| 275 |
+
|
| 276 |
+
current_state.append((token, color))
|
| 277 |
+
|
| 278 |
+
else:
|
| 279 |
+
# Previously revealed
|
| 280 |
+
token = tokenizer.decode([x[0, pos].item()], skip_special_tokens=True)
|
| 281 |
+
current_state.append((token, "#6699CC")) # Light blue
|
| 282 |
+
|
| 283 |
+
visualization_states.append(current_state)
|
| 284 |
|
| 285 |
# Extract final text (just the assistant's response)
|
| 286 |
response_tokens = x[0, prompt_length:]
|
|
|
|
|
|
|
|
|
|
| 287 |
final_text = tokenizer.decode(response_tokens,
|
| 288 |
+
skip_special_tokens=True,
|
| 289 |
+
clean_up_tokenization_spaces=True)
|
| 290 |
|
| 291 |
return visualization_states, final_text
|
| 292 |
|
|
|
|
| 296 |
'''
|
| 297 |
def create_chatbot_demo():
|
| 298 |
with gr.Blocks(css=css) as demo:
|
| 299 |
+
gr.Markdown("# LLaDA - Large Language Diffusion Model Demo")
|
| 300 |
gr.Markdown("[model](https://huggingface.co/GSAI-ML/LLaDA-8B-Instruct), [project page](https://ml-gsai.github.io/LLaDA-demo/)")
|
| 301 |
|
| 302 |
+
# STATE MANAGEMENT
|
|
|
|
| 303 |
chat_history = gr.State([])
|
| 304 |
|
| 305 |
# UI COMPONENTS
|
|
|
|
| 306 |
with gr.Row():
|
| 307 |
with gr.Column(scale=3):
|
| 308 |
chatbot_ui = gr.Chatbot(label="Conversation", height=500)
|
|
|
|
| 329 |
combine_adjacent=False,
|
| 330 |
show_legend=True,
|
| 331 |
)
|
| 332 |
+
|
| 333 |
+
# Advanced generation settings
|
| 334 |
with gr.Accordion("Generation Settings", open=False):
|
| 335 |
with gr.Row():
|
| 336 |
gen_length = gr.Slider(
|
|
|
|
| 341 |
minimum=8, maximum=64, value=32, step=4,
|
| 342 |
label="Denoising Steps"
|
| 343 |
)
|
| 344 |
+
with gr.Row():
|
| 345 |
+
temperature = gr.Slider(
|
| 346 |
+
minimum=0.0, maximum=1.0, value=0.0, step=0.1,
|
| 347 |
+
label="Temperature"
|
| 348 |
+
)
|
| 349 |
+
cfg_scale = gr.Slider(
|
| 350 |
+
minimum=0.0, maximum=2.0, value=0.0, step=0.1,
|
| 351 |
+
label="CFG Scale"
|
| 352 |
+
)
|
| 353 |
+
with gr.Row():
|
| 354 |
+
block_length = gr.Slider(
|
| 355 |
+
minimum=8, maximum=128, value=32, step=8,
|
| 356 |
+
label="Block Length"
|
| 357 |
+
)
|
| 358 |
+
remasking_strategy = gr.Radio(
|
| 359 |
+
choices=["low_confidence", "random"],
|
| 360 |
+
value="low_confidence",
|
| 361 |
+
label="Remasking Strategy"
|
| 362 |
+
)
|
| 363 |
+
with gr.Row():
|
| 364 |
+
visualization_delay = gr.Slider(
|
| 365 |
+
minimum=0.0, maximum=1.0, value=0.1, step=0.1,
|
| 366 |
+
label="Visualization Delay (seconds)"
|
| 367 |
+
)
|
| 368 |
|
| 369 |
+
# Current response text box (hidden)
|
| 370 |
current_response = gr.Textbox(
|
| 371 |
label="Current Response",
|
| 372 |
placeholder="The assistant's response will appear here...",
|
|
|
|
| 404 |
# Return immediately to update UI with user message
|
| 405 |
return history, history_for_display, message_out, [], ""
|
| 406 |
|
| 407 |
+
def bot_response(history, gen_length, steps, constraints, delay, temperature, cfg_scale, block_length, remasking):
|
| 408 |
"""Generate bot response for the latest message"""
|
| 409 |
if not history:
|
| 410 |
return history, [], ""
|
|
|
|
| 428 |
messages,
|
| 429 |
gen_length=gen_length,
|
| 430 |
steps=steps,
|
| 431 |
+
constraints=parsed_constraints,
|
| 432 |
+
temperature=temperature,
|
| 433 |
+
cfg_scale=cfg_scale,
|
| 434 |
+
block_length=block_length,
|
| 435 |
+
remasking=remasking
|
| 436 |
)
|
| 437 |
|
| 438 |
# Update history with the assistant's response
|
|
|
|
| 488 |
# This happens after the user message is displayed
|
| 489 |
msg_submit.then(
|
| 490 |
fn=bot_response,
|
| 491 |
+
inputs=[
|
| 492 |
+
chat_history, gen_length, steps, constraints_input,
|
| 493 |
+
visualization_delay, temperature, cfg_scale, block_length,
|
| 494 |
+
remasking_strategy
|
| 495 |
+
],
|
| 496 |
outputs=[chatbot_ui, output_vis, current_response]
|
| 497 |
)
|
| 498 |
|
| 499 |
send_click.then(
|
| 500 |
fn=bot_response,
|
| 501 |
+
inputs=[
|
| 502 |
+
chat_history, gen_length, steps, constraints_input,
|
| 503 |
+
visualization_delay, temperature, cfg_scale, block_length,
|
| 504 |
+
remasking_strategy
|
| 505 |
+
],
|
| 506 |
outputs=[chatbot_ui, output_vis, current_response]
|
| 507 |
)
|
| 508 |
|