Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 27,840 Bytes
f555806 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 |
import { NextRequest, NextResponse } from 'next/server';
import { spawn } from 'child_process';
import { writeFile } from 'fs/promises';
import path from 'path';
import { tmpdir } from 'os';
export async function POST(request: NextRequest) {
try {
const body = await request.json();
const { action, token, hardware, namespace, jobConfig, datasetRepo } = body;
switch (action) {
case 'checkStatus':
try {
if (!token || !jobConfig?.hf_job_id) {
return NextResponse.json({ error: 'Token and job ID required' }, { status: 400 });
}
const jobStatus = await checkHFJobStatus(token, jobConfig.hf_job_id);
return NextResponse.json({ status: jobStatus });
} catch (error: any) {
console.error('Job status check error:', error);
return NextResponse.json({ error: error.message }, { status: 500 });
}
case 'generateScript':
try {
const uvScript = generateUVScript({
jobConfig,
datasetRepo,
namespace,
token: token || 'YOUR_HF_TOKEN',
});
return NextResponse.json({
script: uvScript,
filename: `train_${jobConfig.config.name.replace(/[^a-zA-Z0-9]/g, '_')}.py`
});
} catch (error: any) {
return NextResponse.json({ error: error.message }, { status: 500 });
}
case 'submitJob':
try {
if (!token || !hardware) {
return NextResponse.json({ error: 'Token and hardware required' }, { status: 400 });
}
// Generate UV script
const uvScript = generateUVScript({
jobConfig,
datasetRepo,
namespace,
token,
});
// Write script to temporary file
const scriptPath = path.join(tmpdir(), `train_${Date.now()}.py`);
await writeFile(scriptPath, uvScript);
// Submit HF job using uv run
const jobId = await submitHFJobUV(token, hardware, scriptPath);
return NextResponse.json({
success: true,
jobId,
message: `Job submitted successfully with ID: ${jobId}`
});
} catch (error: any) {
console.error('Job submission error:', error);
return NextResponse.json({ error: error.message }, { status: 500 });
}
default:
return NextResponse.json({ error: 'Invalid action' }, { status: 400 });
}
} catch (error: any) {
console.error('HF Jobs API error:', error);
return NextResponse.json({ error: error.message }, { status: 500 });
}
}
function generateUVScript({ jobConfig, datasetRepo, namespace, token }: {
jobConfig: any;
datasetRepo: string;
namespace: string;
token: string;
}) {
const config = jobConfig.config;
const process = config.process[0];
return `# /// script
# dependencies = [
# "torch>=2.0.0",
# "torchvision",
# "torchao==0.10.0",
# "safetensors",
# "diffusers @ git+https://github.com/huggingface/diffusers@7a2b78bf0f788d311cc96b61e660a8e13e3b1e63",
# "transformers==4.52.4",
# "lycoris-lora==1.8.3",
# "flatten_json",
# "pyyaml",
# "oyaml",
# "tensorboard",
# "kornia",
# "invisible-watermark",
# "einops",
# "accelerate",
# "toml",
# "albumentations==1.4.15",
# "albucore==0.0.16",
# "pydantic",
# "omegaconf",
# "k-diffusion",
# "open_clip_torch",
# "timm",
# "prodigyopt",
# "controlnet_aux==0.0.10",
# "python-dotenv",
# "bitsandbytes",
# "hf_transfer",
# "lpips",
# "pytorch_fid",
# "optimum-quanto==0.2.4",
# "sentencepiece",
# "huggingface_hub",
# "peft",
# "python-slugify",
# "opencv-python-headless",
# "pytorch-wavelets==1.3.0",
# "matplotlib==3.10.1",
# "setuptools==69.5.1",
# "datasets==4.0.0",
# "pyarrow==20.0.0",
# "pillow",
# "ftfy",
# ]
# ///
import os
import sys
import subprocess
import argparse
import oyaml as yaml
from datasets import load_dataset
from huggingface_hub import HfApi, create_repo, upload_folder, snapshot_download
import tempfile
import shutil
import glob
from PIL import Image
def setup_ai_toolkit():
"""Clone and setup ai-toolkit repository"""
repo_dir = "ai-toolkit"
if not os.path.exists(repo_dir):
print("Cloning ai-toolkit repository...")
subprocess.run(
["git", "clone", "https://github.com/ostris/ai-toolkit.git", repo_dir],
check=True
)
sys.path.insert(0, os.path.abspath(repo_dir))
return repo_dir
def download_dataset(dataset_repo: str, local_path: str):
"""Download dataset from HF Hub as files"""
print(f"Downloading dataset from {dataset_repo}...")
# Create local dataset directory
os.makedirs(local_path, exist_ok=True)
# Use snapshot_download to get the dataset files directly
from huggingface_hub import snapshot_download
try:
# First try to download as a structured dataset
dataset = load_dataset(dataset_repo, split="train")
# Download images and captions from structured dataset
for i, item in enumerate(dataset):
# Save image
if "image" in item:
image_path = os.path.join(local_path, f"image_{i:06d}.jpg")
image = item["image"]
# Convert RGBA to RGB if necessary (for JPEG compatibility)
if image.mode == 'RGBA':
# Create a white background and paste the RGBA image on it
background = Image.new('RGB', image.size, (255, 255, 255))
background.paste(image, mask=image.split()[-1]) # Use alpha channel as mask
image = background
elif image.mode not in ['RGB', 'L']:
# Convert any other mode to RGB
image = image.convert('RGB')
image.save(image_path, 'JPEG')
# Save caption
if "text" in item:
caption_path = os.path.join(local_path, f"image_{i:06d}.txt")
with open(caption_path, "w", encoding="utf-8") as f:
f.write(item["text"])
print(f"Downloaded {len(dataset)} items to {local_path}")
except Exception as e:
print(f"Failed to load as structured dataset: {e}")
print("Attempting to download raw files...")
# Download the dataset repository as files
temp_repo_path = snapshot_download(repo_id=dataset_repo, repo_type="dataset")
# Copy all image and text files to the local path
import glob
import shutil
print(f"Downloaded repo to: {temp_repo_path}")
print(f"Contents: {os.listdir(temp_repo_path)}")
# Find all image files
image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.webp', '*.bmp', '*.JPG', '*.JPEG', '*.PNG']
image_files = []
for ext in image_extensions:
pattern = os.path.join(temp_repo_path, "**", ext)
found_files = glob.glob(pattern, recursive=True)
image_files.extend(found_files)
print(f"Pattern {pattern} found {len(found_files)} files")
# Find all text files
text_files = glob.glob(os.path.join(temp_repo_path, "**", "*.txt"), recursive=True)
print(f"Found {len(image_files)} image files and {len(text_files)} text files")
# Copy image files
for i, img_file in enumerate(image_files):
dest_path = os.path.join(local_path, f"image_{i:06d}.jpg")
# Load and convert image if needed
try:
with Image.open(img_file) as image:
if image.mode == 'RGBA':
background = Image.new('RGB', image.size, (255, 255, 255))
background.paste(image, mask=image.split()[-1])
image = background
elif image.mode not in ['RGB', 'L']:
image = image.convert('RGB')
image.save(dest_path, 'JPEG')
except Exception as img_error:
print(f"Error processing image {img_file}: {img_error}")
continue
# Copy text files (captions)
for i, txt_file in enumerate(text_files[:len(image_files)]): # Match number of images
dest_path = os.path.join(local_path, f"image_{i:06d}.txt")
try:
shutil.copy2(txt_file, dest_path)
except Exception as txt_error:
print(f"Error copying text file {txt_file}: {txt_error}")
continue
print(f"Downloaded {len(image_files)} images and {len(text_files)} captions to {local_path}")
def create_config(dataset_path: str, output_path: str):
"""Create training configuration"""
import json
# Load config from JSON string and fix boolean/null values for Python
config_str = """${JSON.stringify(jobConfig, null, 2)}"""
config_str = config_str.replace('true', 'True').replace('false', 'False').replace('null', 'None')
config = eval(config_str)
# Update paths for cloud environment
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_path
config["config"]["process"][0]["training_folder"] = output_path
# Remove sqlite_db_path as it's not needed for cloud training
if "sqlite_db_path" in config["config"]["process"][0]:
del config["config"]["process"][0]["sqlite_db_path"]
# Also change trainer type from ui_trainer to standard trainer to avoid UI dependencies
if config["config"]["process"][0]["type"] == "ui_trainer":
config["config"]["process"][0]["type"] = "sd_trainer"
return config
def upload_results(output_path: str, model_name: str, namespace: str, token: str, config: dict):
"""Upload trained model to HF Hub with README generation and proper file organization"""
import tempfile
import shutil
import glob
import re
import yaml
from datetime import datetime
from huggingface_hub import create_repo, upload_file, HfApi
try:
repo_id = f"{namespace}/{model_name}"
# Create repository
create_repo(repo_id=repo_id, token=token, exist_ok=True)
print(f"Uploading model to {repo_id}...")
# Create temporary directory for organized upload
with tempfile.TemporaryDirectory() as temp_upload_dir:
api = HfApi()
# 1. Find and upload model files to root directory
safetensors_files = glob.glob(os.path.join(output_path, "**", "*.safetensors"), recursive=True)
json_files = glob.glob(os.path.join(output_path, "**", "*.json"), recursive=True)
txt_files = glob.glob(os.path.join(output_path, "**", "*.txt"), recursive=True)
uploaded_files = []
# Upload .safetensors files to root
for file_path in safetensors_files:
filename = os.path.basename(file_path)
print(f"Uploading {filename} to repository root...")
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=filename,
repo_id=repo_id,
token=token
)
uploaded_files.append(filename)
# Upload relevant JSON config files to root (skip metadata.json and other internal files)
config_files_uploaded = []
for file_path in json_files:
filename = os.path.basename(file_path)
# Only upload important config files, skip internal metadata
if any(keyword in filename.lower() for keyword in ['config', 'adapter', 'lora', 'model']):
print(f"Uploading {filename} to repository root...")
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=filename,
repo_id=repo_id,
token=token
)
uploaded_files.append(filename)
config_files_uploaded.append(filename)
# 2. Handle sample images
samples_uploaded = []
samples_dir = os.path.join(output_path, "samples")
if os.path.isdir(samples_dir):
print("Uploading sample images...")
# Create samples directory in repo
for filename in os.listdir(samples_dir):
if filename.lower().endswith(('.jpg', '.jpeg', '.png', '.webp')):
file_path = os.path.join(samples_dir, filename)
repo_path = f"samples/{filename}"
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=repo_path,
repo_id=repo_id,
token=token
)
samples_uploaded.append(repo_path)
# 3. Generate and upload README.md
readme_content = generate_model_card_readme(
repo_id=repo_id,
config=config,
model_name=model_name,
samples_dir=samples_dir if os.path.isdir(samples_dir) else None,
uploaded_files=uploaded_files
)
# Create README.md file and upload to root
readme_path = os.path.join(temp_upload_dir, "README.md")
with open(readme_path, "w", encoding="utf-8") as f:
f.write(readme_content)
print("Uploading README.md to repository root...")
api.upload_file(
path_or_fileobj=readme_path,
path_in_repo="README.md",
repo_id=repo_id,
token=token
)
print(f"Model uploaded successfully to https://huggingface.co/{repo_id}")
print(f"Files uploaded: {len(uploaded_files)} model files, {len(samples_uploaded)} samples, README.md")
except Exception as e:
print(f"Failed to upload model: {e}")
raise e
def generate_model_card_readme(repo_id: str, config: dict, model_name: str, samples_dir: str = None, uploaded_files: list = None) -> str:
"""Generate README.md content for the model card based on AI Toolkit's implementation"""
import re
import yaml
import os
try:
# Extract configuration details
process_config = config.get("config", {}).get("process", [{}])[0]
model_config = process_config.get("model", {})
train_config = process_config.get("train", {})
sample_config = process_config.get("sample", {})
# Gather model info
base_model = model_config.get("name_or_path", "unknown")
trigger_word = process_config.get("trigger_word")
arch = model_config.get("arch", "")
# Determine license based on base model
if "FLUX.1-schnell" in base_model:
license_info = {"license": "apache-2.0"}
elif "FLUX.1-dev" in base_model:
license_info = {
"license": "other",
"license_name": "flux-1-dev-non-commercial-license",
"license_link": "https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md"
}
else:
license_info = {"license": "creativeml-openrail-m"}
# Generate tags based on model architecture
tags = ["text-to-image"]
if "xl" in arch.lower():
tags.append("stable-diffusion-xl")
if "flux" in arch.lower():
tags.append("flux")
if "lumina" in arch.lower():
tags.append("lumina2")
if "sd3" in arch.lower() or "v3" in arch.lower():
tags.append("sd3")
# Add LoRA-specific tags
tags.extend(["lora", "diffusers", "template:sd-lora", "ai-toolkit"])
# Generate widgets from sample images and prompts
widgets = []
if samples_dir and os.path.isdir(samples_dir):
sample_prompts = sample_config.get("samples", [])
if not sample_prompts:
# Fallback to old format
sample_prompts = [{"prompt": p} for p in sample_config.get("prompts", [])]
# Get sample image files
sample_files = []
if os.path.isdir(samples_dir):
for filename in os.listdir(samples_dir):
if filename.lower().endswith(('.jpg', '.jpeg', '.png', '.webp')):
# Parse filename pattern: timestamp__steps_index.jpg
match = re.search(r"__(\d+)_(\d+)\.jpg$", filename)
if match:
steps, index = int(match.group(1)), int(match.group(2))
# Only use samples from final training step
final_steps = train_config.get("steps", 1000)
if steps == final_steps:
sample_files.append((index, f"samples/{filename}"))
# Sort by index and create widgets
sample_files.sort(key=lambda x: x[0])
for i, prompt_obj in enumerate(sample_prompts):
prompt = prompt_obj.get("prompt", "") if isinstance(prompt_obj, dict) else str(prompt_obj)
if i < len(sample_files):
_, image_path = sample_files[i]
widgets.append({
"text": prompt,
"output": {"url": image_path}
})
# Determine torch dtype based on model
dtype = "torch.bfloat16" if "flux" in arch.lower() else "torch.float16"
# Find the main safetensors file for usage example
main_safetensors = f"{model_name}.safetensors"
if uploaded_files:
safetensors_files = [f for f in uploaded_files if f.endswith('.safetensors')]
if safetensors_files:
main_safetensors = safetensors_files[0]
# Construct YAML frontmatter
frontmatter = {
"tags": tags,
"base_model": base_model,
**license_info
}
if widgets:
frontmatter["widget"] = widgets
if trigger_word:
frontmatter["instance_prompt"] = trigger_word
# Get first prompt for usage example
usage_prompt = trigger_word or "a beautiful landscape"
if widgets:
usage_prompt = widgets[0]["text"]
elif trigger_word:
usage_prompt = trigger_word
# Construct README content
trigger_section = f"You should use \`{trigger_word}\` to trigger the image generation." if trigger_word else "No trigger words defined."
# Build YAML frontmatter string
frontmatter_yaml = yaml.dump(frontmatter, default_flow_style=False, allow_unicode=True, sort_keys=False).strip()
readme_content = f"""---
{frontmatter_yaml}
---
# {model_name}
Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit)
<Gallery />
## Trigger words
{trigger_section}
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc.
Weights for this model are available in Safetensors format.
[Download]({repo_id}/tree/main) them in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
\`\`\`py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('{base_model}', torch_dtype={dtype}).to('cuda')
pipeline.load_lora_weights('{repo_id}', weight_name='{main_safetensors}')
image = pipeline('{usage_prompt}').images[0]
image.save("my_image.png")
\`\`\`
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
"""
return readme_content
except Exception as e:
print(f"Error generating README: {e}")
# Fallback simple README
return f"""# {model_name}
Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit)
## Download model
Weights for this model are available in Safetensors format.
[Download]({repo_id}/tree/main) them in the Files & versions tab.
"""
def main():
# Setup environment - token comes from HF Jobs secrets
if "HF_TOKEN" not in os.environ:
raise ValueError("HF_TOKEN environment variable not set")
# Install system dependencies for headless operation
print("Installing system dependencies...")
try:
subprocess.run(["apt-get", "update"], check=True, capture_output=True)
subprocess.run([
"apt-get", "install", "-y",
"libgl1-mesa-glx",
"libglib2.0-0",
"libsm6",
"libxext6",
"libxrender-dev",
"libgomp1",
"ffmpeg"
], check=True, capture_output=True)
print("System dependencies installed successfully")
except subprocess.CalledProcessError as e:
print(f"Failed to install system dependencies: {e}")
print("Continuing without system dependencies...")
# Setup ai-toolkit
toolkit_dir = setup_ai_toolkit()
# Create temporary directories
with tempfile.TemporaryDirectory() as temp_dir:
dataset_path = os.path.join(temp_dir, "dataset")
output_path = os.path.join(temp_dir, "output")
# Download dataset
download_dataset("${datasetRepo}", dataset_path)
# Create config
config = create_config(dataset_path, output_path)
config_path = os.path.join(temp_dir, "config.yaml")
with open(config_path, "w") as f:
yaml.dump(config, f, default_flow_style=False)
# Run training
print("Starting training...")
os.chdir(toolkit_dir)
subprocess.run([
sys.executable, "run.py",
config_path
], check=True)
print("Training completed!")
# Upload results
model_name = f"${jobConfig.config.name}-lora"
upload_results(output_path, model_name, "${namespace}", os.environ["HF_TOKEN"], config)
if __name__ == "__main__":
main()
`;
}
async function submitHFJobUV(token: string, hardware: string, scriptPath: string): Promise<string> {
return new Promise((resolve, reject) => {
// Ensure token is available
if (!token) {
reject(new Error('HF_TOKEN is required'));
return;
}
console.log('Setting up environment with HF_TOKEN for job submission');
console.log(`Command: hf jobs uv run --flavor ${hardware} --timeout 5h --secrets HF_TOKEN --detach ${scriptPath}`);
// Use hf jobs uv run command with timeout and detach to get job ID
const childProcess = spawn('hf', [
'jobs', 'uv', 'run',
'--flavor', hardware,
'--timeout', '5h',
'--secrets', 'HF_TOKEN',
'--detach',
scriptPath
], {
env: {
...process.env,
HF_TOKEN: token
}
});
let output = '';
let error = '';
childProcess.stdout.on('data', (data) => {
const text = data.toString();
output += text;
console.log('HF Jobs stdout:', text);
});
childProcess.stderr.on('data', (data) => {
const text = data.toString();
error += text;
console.log('HF Jobs stderr:', text);
});
childProcess.on('close', (code) => {
console.log('HF Jobs process closed with code:', code);
console.log('Full output:', output);
console.log('Full error:', error);
if (code === 0) {
// With --detach flag, the output should be just the job ID
const fullText = (output + ' ' + error).trim();
// Updated patterns to handle variable-length hex job IDs (16-24+ characters)
const jobIdPatterns = [
/Job started with ID:\s*([a-f0-9]{16,})/i, // "Job started with ID: 68b26b73767540db9fc726ac"
/job\s+([a-f0-9]{16,})/i, // "job 68b26b73767540db9fc726ac"
/Job ID:\s*([a-f0-9]{16,})/i, // "Job ID: 68b26b73767540db9fc726ac"
/created\s+job\s+([a-f0-9]{16,})/i, // "created job 68b26b73767540db9fc726ac"
/submitted.*?job\s+([a-f0-9]{16,})/i, // "submitted ... job 68b26b73767540db9fc726ac"
/https:\/\/huggingface\.co\/jobs\/[^\/]+\/([a-f0-9]{16,})/i, // URL pattern
/([a-f0-9]{20,})/i, // Fallback: any 20+ char hex string
];
let jobId = 'unknown';
for (const pattern of jobIdPatterns) {
const match = fullText.match(pattern);
if (match && match[1] && match[1] !== 'started') {
jobId = match[1];
console.log(`Extracted job ID using pattern: ${pattern.toString()} -> ${jobId}`);
break;
}
}
resolve(jobId);
} else {
reject(new Error(error || output || 'Failed to submit job'));
}
});
childProcess.on('error', (err) => {
console.error('HF Jobs process error:', err);
reject(new Error(`Process error: ${err.message}`));
});
});
}
async function checkHFJobStatus(token: string, jobId: string): Promise<any> {
return new Promise((resolve, reject) => {
console.log(`Checking HF Job status for: ${jobId}`);
const childProcess = spawn('hf', [
'jobs', 'inspect', jobId
], {
env: {
...process.env,
HF_TOKEN: token
}
});
let output = '';
let error = '';
childProcess.stdout.on('data', (data) => {
const text = data.toString();
output += text;
});
childProcess.stderr.on('data', (data) => {
const text = data.toString();
error += text;
});
childProcess.on('close', (code) => {
if (code === 0) {
try {
// Parse the JSON output from hf jobs inspect
const jobInfo = JSON.parse(output);
if (Array.isArray(jobInfo) && jobInfo.length > 0) {
const job = jobInfo[0];
resolve({
id: job.id,
status: job.status?.stage || 'UNKNOWN',
message: job.status?.message,
created_at: job.created_at,
flavor: job.flavor,
url: job.url,
});
} else {
reject(new Error('Invalid job info response'));
}
} catch (parseError: any) {
console.error('Failed to parse job status:', parseError, output);
reject(new Error('Failed to parse job status'));
}
} else {
reject(new Error(error || output || 'Failed to check job status'));
}
});
childProcess.on('error', (err) => {
console.error('HF Jobs inspect process error:', err);
reject(new Error(`Process error: ${err.message}`));
});
});
} |