|
|
import gradio as gr |
|
|
import torch |
|
|
torch.jit.script = lambda f: f |
|
|
import timm |
|
|
import time |
|
|
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download |
|
|
from safetensors.torch import load_file |
|
|
from share_btn import community_icon_html, loading_icon_html, share_js |
|
|
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler |
|
|
|
|
|
import lora |
|
|
import copy |
|
|
import json |
|
|
import gc |
|
|
import random |
|
|
from urllib.parse import quote |
|
|
import gdown |
|
|
import os |
|
|
import re |
|
|
import requests |
|
|
|
|
|
import diffusers |
|
|
from diffusers.utils import load_image |
|
|
from diffusers.models import ControlNetModel |
|
|
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler |
|
|
import cv2 |
|
|
import torch |
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
|
|
|
from insightface.app import FaceAnalysis |
|
|
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps |
|
|
from controlnet_aux import ZoeDetector |
|
|
|
|
|
from compel import Compel, ReturnedEmbeddingsType |
|
|
import spaces |
|
|
|
|
|
from gradio_imageslider import ImageSlider |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with open("sdxl_loras.json", "r") as file: |
|
|
data = json.load(file) |
|
|
sdxl_loras_raw = [ |
|
|
{ |
|
|
"image": item["image"], |
|
|
"title": item["title"], |
|
|
"repo": item["repo"], |
|
|
"trigger_word": item["trigger_word"], |
|
|
"weights": item["weights"], |
|
|
"is_compatible": item["is_compatible"], |
|
|
"is_pivotal": item.get("is_pivotal", False), |
|
|
"text_embedding_weights": item.get("text_embedding_weights", None), |
|
|
"likes": item.get("likes", 0), |
|
|
"downloads": item.get("downloads", 0), |
|
|
"is_nc": item.get("is_nc", False), |
|
|
"new": item.get("new", False), |
|
|
} |
|
|
for item in data |
|
|
] |
|
|
|
|
|
with open("defaults_data.json", "r") as file: |
|
|
lora_defaults = json.load(file) |
|
|
|
|
|
|
|
|
device = "cuda" |
|
|
|
|
|
state_dicts = {} |
|
|
|
|
|
for item in sdxl_loras_raw: |
|
|
saved_name = hf_hub_download(item["repo"], item["weights"]) |
|
|
|
|
|
if not saved_name.endswith('.safetensors'): |
|
|
state_dict = torch.load(saved_name) |
|
|
else: |
|
|
state_dict = load_file(saved_name) |
|
|
|
|
|
state_dicts[item["repo"]] = { |
|
|
"saved_name": saved_name, |
|
|
"state_dict": state_dict |
|
|
} |
|
|
|
|
|
sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True] |
|
|
|
|
|
|
|
|
hf_hub_download( |
|
|
repo_id="InstantX/InstantID", |
|
|
filename="ControlNetModel/config.json", |
|
|
local_dir="/data/checkpoints", |
|
|
) |
|
|
hf_hub_download( |
|
|
repo_id="InstantX/InstantID", |
|
|
filename="ControlNetModel/diffusion_pytorch_model.safetensors", |
|
|
local_dir="/data/checkpoints", |
|
|
) |
|
|
hf_hub_download( |
|
|
repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="/data/checkpoints" |
|
|
) |
|
|
hf_hub_download( |
|
|
repo_id="latent-consistency/lcm-lora-sdxl", |
|
|
filename="pytorch_lora_weights.safetensors", |
|
|
local_dir="/data/checkpoints", |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
antelope_download = snapshot_download(repo_id="DIAMONIK7777/antelopev2", local_dir="/data/models/antelopev2") |
|
|
print(antelope_download) |
|
|
app = FaceAnalysis(name='antelopev2', root='/data', providers=['CPUExecutionProvider']) |
|
|
app.prepare(ctx_id=0, det_size=(640, 640)) |
|
|
|
|
|
|
|
|
face_adapter = f'/data/checkpoints/ip-adapter.bin' |
|
|
controlnet_path = f'/data/checkpoints/ControlNetModel' |
|
|
|
|
|
|
|
|
st = time.time() |
|
|
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) |
|
|
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=torch.float16) |
|
|
et = time.time() |
|
|
elapsed_time = et - st |
|
|
print('Loading ControlNet took: ', elapsed_time, 'seconds') |
|
|
st = time.time() |
|
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
|
et = time.time() |
|
|
elapsed_time = et - st |
|
|
print('Loading VAE took: ', elapsed_time, 'seconds') |
|
|
st = time.time() |
|
|
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21", |
|
|
vae=vae, |
|
|
controlnet=[identitynet, zoedepthnet], |
|
|
torch_dtype=torch.float16) |
|
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True) |
|
|
pipe.load_ip_adapter_instantid(face_adapter) |
|
|
pipe.set_ip_adapter_scale(0.8) |
|
|
et = time.time() |
|
|
elapsed_time = et - st |
|
|
print('Loading pipeline took: ', elapsed_time, 'seconds') |
|
|
st = time.time() |
|
|
compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True]) |
|
|
et = time.time() |
|
|
elapsed_time = et - st |
|
|
print('Loading Compel took: ', elapsed_time, 'seconds') |
|
|
|
|
|
st = time.time() |
|
|
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators") |
|
|
et = time.time() |
|
|
elapsed_time = et - st |
|
|
print('Loading Zoe took: ', elapsed_time, 'seconds') |
|
|
zoe.to(device) |
|
|
pipe.to(device) |
|
|
|
|
|
last_lora = "" |
|
|
last_fused = False |
|
|
js = ''' |
|
|
var button = document.getElementById('button'); |
|
|
// Add a click event listener to the button |
|
|
button.addEventListener('click', function() { |
|
|
element.classList.add('selected'); |
|
|
}); |
|
|
''' |
|
|
lora_archive = "/data" |
|
|
|
|
|
def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative, is_new=False): |
|
|
lora_repo = sdxl_loras[selected_state.index]["repo"] |
|
|
new_placeholder = "Type a prompt to use your selected LoRA" |
|
|
weight_name = sdxl_loras[selected_state.index]["weights"] |
|
|
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }" |
|
|
|
|
|
for lora_list in lora_defaults: |
|
|
if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]: |
|
|
face_strength = lora_list.get("face_strength", 0.85) |
|
|
image_strength = lora_list.get("image_strength", 0.15) |
|
|
weight = lora_list.get("weight", 0.9) |
|
|
depth_control_scale = lora_list.get("depth_control_scale", 0.8) |
|
|
negative = lora_list.get("negative", "") |
|
|
|
|
|
if(is_new): |
|
|
if(selected_state.index == 0): |
|
|
selected_state.index = -9999 |
|
|
else: |
|
|
selected_state.index *= -1 |
|
|
|
|
|
return ( |
|
|
updated_text, |
|
|
gr.update(placeholder=new_placeholder), |
|
|
face_strength, |
|
|
image_strength, |
|
|
weight, |
|
|
depth_control_scale, |
|
|
negative, |
|
|
selected_state |
|
|
) |
|
|
|
|
|
def center_crop_image_as_square(img): |
|
|
square_size = min(img.size) |
|
|
|
|
|
left = (img.width - square_size) / 2 |
|
|
top = (img.height - square_size) / 2 |
|
|
right = (img.width + square_size) / 2 |
|
|
bottom = (img.height + square_size) / 2 |
|
|
|
|
|
img_cropped = img.crop((left, top, right, bottom)) |
|
|
return img_cropped |
|
|
|
|
|
def check_selected(selected_state, custom_lora): |
|
|
if not selected_state and not custom_lora: |
|
|
raise gr.Error("You must select a style") |
|
|
|
|
|
def merge_incompatible_lora(full_path_lora, lora_scale): |
|
|
for weights_file in [full_path_lora]: |
|
|
if ";" in weights_file: |
|
|
weights_file, multiplier = weights_file.split(";") |
|
|
multiplier = float(multiplier) |
|
|
else: |
|
|
multiplier = lora_scale |
|
|
|
|
|
lora_model, weights_sd = lora.create_network_from_weights( |
|
|
multiplier, |
|
|
full_path_lora, |
|
|
pipe.vae, |
|
|
pipe.text_encoder, |
|
|
pipe.unet, |
|
|
for_inference=True, |
|
|
) |
|
|
lora_model.merge_to( |
|
|
pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda" |
|
|
) |
|
|
del weights_sd |
|
|
del lora_model |
|
|
@spaces.GPU |
|
|
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index, st): |
|
|
print(loaded_state_dict) |
|
|
et = time.time() |
|
|
elapsed_time = et - st |
|
|
print('Getting into the decorated function took: ', elapsed_time, 'seconds') |
|
|
global last_fused, last_lora |
|
|
print("Last LoRA: ", last_lora) |
|
|
print("Current LoRA: ", repo_name) |
|
|
print("Last fused: ", last_fused) |
|
|
|
|
|
st = time.time() |
|
|
with torch.no_grad(): |
|
|
image_zoe = zoe(face_image) |
|
|
width, height = face_kps.size |
|
|
images = [face_kps, image_zoe.resize((height, width))] |
|
|
et = time.time() |
|
|
elapsed_time = et - st |
|
|
print('Zoe Depth calculations took: ', elapsed_time, 'seconds') |
|
|
if last_lora != repo_name: |
|
|
if(last_fused): |
|
|
st = time.time() |
|
|
pipe.unfuse_lora() |
|
|
pipe.unload_lora_weights() |
|
|
pipe.unload_textual_inversion() |
|
|
et = time.time() |
|
|
elapsed_time = et - st |
|
|
print('Unfuse and unload LoRA took: ', elapsed_time, 'seconds') |
|
|
st = time.time() |
|
|
pipe.load_lora_weights(loaded_state_dict) |
|
|
pipe.fuse_lora(lora_scale) |
|
|
et = time.time() |
|
|
elapsed_time = et - st |
|
|
print('Fuse and load LoRA took: ', elapsed_time, 'seconds') |
|
|
last_fused = True |
|
|
is_pivotal = sdxl_loras[selected_state_index]["is_pivotal"] |
|
|
if(is_pivotal): |
|
|
|
|
|
text_embedding_name = sdxl_loras[selected_state_index]["text_embedding_weights"] |
|
|
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model") |
|
|
state_dict_embedding = load_file(embedding_path) |
|
|
pipe.load_textual_inversion(state_dict_embedding["clip_l" if "clip_l" in state_dict_embedding else "text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) |
|
|
pipe.load_textual_inversion(state_dict_embedding["clip_g" if "clip_g" in state_dict_embedding else "text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) |
|
|
|
|
|
print("Processing prompt...") |
|
|
st = time.time() |
|
|
conditioning, pooled = compel(prompt) |
|
|
if(negative): |
|
|
negative_conditioning, negative_pooled = compel(negative) |
|
|
else: |
|
|
negative_conditioning, negative_pooled = None, None |
|
|
et = time.time() |
|
|
elapsed_time = et - st |
|
|
print('Prompt processing took: ', elapsed_time, 'seconds') |
|
|
print("Processing image...") |
|
|
st = time.time() |
|
|
image = pipe( |
|
|
prompt_embeds=conditioning, |
|
|
pooled_prompt_embeds=pooled, |
|
|
negative_prompt_embeds=negative_conditioning, |
|
|
negative_pooled_prompt_embeds=negative_pooled, |
|
|
width=1024, |
|
|
height=1024, |
|
|
image_embeds=face_emb, |
|
|
image=face_image, |
|
|
strength=1-image_strength, |
|
|
control_image=images, |
|
|
num_inference_steps=20, |
|
|
guidance_scale = guidance_scale, |
|
|
controlnet_conditioning_scale=[face_strength, depth_control_scale], |
|
|
).images[0] |
|
|
et = time.time() |
|
|
elapsed_time = et - st |
|
|
print('Image processing took: ', elapsed_time, 'seconds') |
|
|
last_lora = repo_name |
|
|
return image |
|
|
|
|
|
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, custom_lora, progress=gr.Progress(track_tqdm=True)): |
|
|
print("Custom LoRA: ", custom_lora) |
|
|
custom_lora_path = custom_lora[0] if custom_lora else None |
|
|
selected_state_index = selected_state.index if selected_state else -1 |
|
|
st = time.time() |
|
|
face_image = center_crop_image_as_square(face_image) |
|
|
try: |
|
|
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) |
|
|
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] |
|
|
face_emb = face_info['embedding'] |
|
|
face_kps = draw_kps(face_image, face_info['kps']) |
|
|
except: |
|
|
raise gr.Error("No face found in your image. Only face images work here. Try again") |
|
|
et = time.time() |
|
|
elapsed_time = et - st |
|
|
print('Cropping and calculating face embeds took: ', elapsed_time, 'seconds') |
|
|
|
|
|
st = time.time() |
|
|
|
|
|
if(custom_lora_path): |
|
|
prompt = f"{prompt} {custom_lora[1]}" |
|
|
else: |
|
|
for lora_list in lora_defaults: |
|
|
if lora_list["model"] == sdxl_loras[selected_state_index]["repo"]: |
|
|
prompt_full = lora_list.get("prompt", None) |
|
|
if(prompt_full): |
|
|
prompt = prompt_full.replace("<subject>", prompt) |
|
|
|
|
|
print("Prompt:", prompt) |
|
|
if(prompt == ""): |
|
|
prompt = "a person" |
|
|
|
|
|
|
|
|
|
|
|
if negative == "": |
|
|
negative = None |
|
|
print("Custom Loaded LoRA: ", custom_lora_path) |
|
|
if not selected_state and not custom_lora_path: |
|
|
raise gr.Error("You must select a style") |
|
|
elif custom_lora_path: |
|
|
repo_name = custom_lora_path |
|
|
full_path_lora = custom_lora_path |
|
|
else: |
|
|
repo_name = sdxl_loras[selected_state_index]["repo"] |
|
|
weight_name = sdxl_loras[selected_state_index]["weights"] |
|
|
full_path_lora = state_dicts[repo_name]["saved_name"] |
|
|
print("Full path LoRA ", full_path_lora) |
|
|
|
|
|
cross_attention_kwargs = None |
|
|
et = time.time() |
|
|
elapsed_time = et - st |
|
|
print('Small content processing took: ', elapsed_time, 'seconds') |
|
|
|
|
|
st = time.time() |
|
|
image = generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, full_path_lora, lora_scale, sdxl_loras, selected_state_index, st) |
|
|
return (face_image, image), gr.update(visible=True) |
|
|
|
|
|
def shuffle_gallery(sdxl_loras): |
|
|
random.shuffle(sdxl_loras) |
|
|
return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras |
|
|
|
|
|
def classify_gallery(sdxl_loras): |
|
|
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get("likes", 0), reverse=True) |
|
|
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery |
|
|
|
|
|
def swap_gallery(order, sdxl_loras): |
|
|
if(order == "random"): |
|
|
return shuffle_gallery(sdxl_loras) |
|
|
else: |
|
|
return classify_gallery(sdxl_loras) |
|
|
|
|
|
def deselect(): |
|
|
return gr.Gallery(selected_index=None) |
|
|
|
|
|
def get_huggingface_safetensors(link): |
|
|
split_link = link.split("/") |
|
|
if(len(split_link) == 2): |
|
|
model_card = ModelCard.load(link) |
|
|
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) |
|
|
trigger_word = model_card.data.get("instance_prompt", "") |
|
|
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None |
|
|
fs = HfFileSystem() |
|
|
try: |
|
|
list_of_files = fs.ls(link, detail=False) |
|
|
for file in list_of_files: |
|
|
if(file.endswith(".safetensors")): |
|
|
safetensors_name = file.replace("/", "_") |
|
|
if(not os.path.exists(f"{lora_archive}/{safetensors_name}")): |
|
|
fs.get_file(file, lpath=f"{lora_archive}/{safetensors_name}") |
|
|
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))): |
|
|
image_elements = file.split("/") |
|
|
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" |
|
|
except: |
|
|
gr.Warning("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") |
|
|
raise Exception("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") |
|
|
return split_link[1], f"{lora_archive}/{safetensors_name}", trigger_word, image_url |
|
|
|
|
|
def get_civitai_safetensors(link): |
|
|
link_split = link.split("civitai.com/") |
|
|
pattern = re.compile(r'models\/(\d+)') |
|
|
regex_match = pattern.search(link_split[1]) |
|
|
if(regex_match): |
|
|
civitai_model_id = regex_match.group(1) |
|
|
else: |
|
|
gr.Warning("No CivitAI model id found in your URL") |
|
|
raise Exception("No CivitAI model id found in your URL") |
|
|
model_request_url = f"https://civitai.com/api/v1/models/{civitai_model_id}?token={os.getenv('CIVITAI_TOKEN')}" |
|
|
x = requests.get(model_request_url) |
|
|
if(x.status_code != 200): |
|
|
raise Exception("Invalid CivitAI URL") |
|
|
model_data = x.json() |
|
|
if(model_data["nsfw"] == True or model_data["nsfwLevel"] > 20): |
|
|
gr.Warning("The model is tagged by CivitAI as adult content and cannot be used in this shared environment.") |
|
|
raise Exception("The model is tagged by CivitAI as adult content and cannot be used in this shared environment.") |
|
|
elif(model_data["type"] != "LORA"): |
|
|
gr.Warning("The model isn't tagged at CivitAI as a LoRA") |
|
|
raise Exception("The model isn't tagged at CivitAI as a LoRA") |
|
|
model_link_download = None |
|
|
image_url = None |
|
|
trigger_word = "" |
|
|
for model in model_data["modelVersions"]: |
|
|
if(model["baseModel"] == "SDXL 1.0"): |
|
|
model_link_download = f"{model['downloadUrl']}/?token={os.getenv('CIVITAI_TOKEN')}" |
|
|
safetensors_name = model["files"][0]["name"] |
|
|
if(not os.path.exists(f"{lora_archive}/{safetensors_name}")): |
|
|
safetensors_file_request = requests.get(model_link_download) |
|
|
if(safetensors_file_request.status_code != 200): |
|
|
raise Exception("Invalid CivitAI download link") |
|
|
with open(f"{lora_archive}/{safetensors_name}", 'wb') as file: |
|
|
file.write(safetensors_file_request.content) |
|
|
trigger_word = model.get("trainedWords", [""])[0] |
|
|
for image in model["images"]: |
|
|
if(image["nsfwLevel"] == 1): |
|
|
image_url = image["url"] |
|
|
break |
|
|
break |
|
|
if(not model_link_download): |
|
|
gr.Warning("We couldn't find a SDXL LoRA on the model you've sent") |
|
|
raise Exception("We couldn't find a SDXL LoRA on the model you've sent") |
|
|
return model_data["name"], f"{lora_archive}/{safetensors_name}", trigger_word, image_url |
|
|
|
|
|
def check_custom_model(link): |
|
|
if(link.startswith("https://")): |
|
|
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")): |
|
|
link_split = link.split("huggingface.co/") |
|
|
return get_huggingface_safetensors(link_split[1]) |
|
|
elif(link.startswith("https://civitai.com") or link.startswith("https://www.civitai.com")): |
|
|
return get_civitai_safetensors(link) |
|
|
else: |
|
|
return get_huggingface_safetensors(link) |
|
|
|
|
|
def show_loading_widget(): |
|
|
return gr.update(visible=True) |
|
|
|
|
|
def load_custom_lora(link): |
|
|
if(link): |
|
|
try: |
|
|
title, path, trigger_word, image = check_custom_model(link) |
|
|
card = f''' |
|
|
<div class="custom_lora_card"> |
|
|
<span>Loaded custom LoRA:</span> |
|
|
<div class="card_internal"> |
|
|
<img src="{image}" /> |
|
|
<div> |
|
|
<h3>{title}</h3> |
|
|
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small> |
|
|
</div> |
|
|
</div> |
|
|
</div> |
|
|
''' |
|
|
return gr.update(visible=True), card, gr.update(visible=True), [path, trigger_word], gr.Gallery(selected_index=None), f"Custom: {path}" |
|
|
except Exception as e: |
|
|
gr.Warning("Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA or a LoRA with mature content") |
|
|
return gr.update(visible=True), "Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA or a LoRA with mature content", gr.update(visible=False), None, gr.update(visible=True), gr.update(visible=True) |
|
|
else: |
|
|
return gr.update(visible=False), "", gr.update(visible=False), None, gr.update(visible=True), gr.update(visible=True) |
|
|
|
|
|
def remove_custom_lora(): |
|
|
return "", gr.update(visible=False), gr.update(visible=False), None |
|
|
with gr.Blocks(css="custom.css") as demo: |
|
|
gr_sdxl_loras = gr.State(value=sdxl_loras_raw) |
|
|
title = gr.HTML( |
|
|
"""<h1><img src="https://i.imgur.com/DVoGw04.png"> |
|
|
<span>Face to All<br><small style=" |
|
|
font-size: 13px; |
|
|
display: block; |
|
|
font-weight: normal; |
|
|
opacity: 0.75; |
|
|
">🧨 diffusers InstantID + ControlNet<br> inspired by fofr's <a href="https://github.com/fofr/cog-face-to-many" target="_blank">face-to-many</a></small></span></h1>""", |
|
|
elem_id="title", |
|
|
) |
|
|
selected_state = gr.State() |
|
|
custom_loaded_lora = gr.State() |
|
|
with gr.Row(elem_id="main_app"): |
|
|
with gr.Column(scale=4, elem_id="box_column"): |
|
|
with gr.Group(elem_id="gallery_box"): |
|
|
photo = gr.Image(label="Upload a picture of yourself", interactive=True, type="pil", height=300) |
|
|
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected", ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gallery = gr.Gallery( |
|
|
|
|
|
label="Pick a style from the gallery", |
|
|
allow_preview=False, |
|
|
columns=4, |
|
|
elem_id="gallery", |
|
|
show_share_button=False, |
|
|
height=550 |
|
|
) |
|
|
custom_model = gr.Textbox(label="or enter a custom Hugging Face or CivitAI SDXL LoRA", placeholder="Paste Hugging Face or CivitAI model path...") |
|
|
custom_model_card = gr.HTML(visible=False) |
|
|
custom_model_button = gr.Button("Remove custom LoRA", visible=False) |
|
|
with gr.Column(scale=5): |
|
|
with gr.Row(): |
|
|
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, info="Describe your subject (optional)", value="a person", elem_id="prompt") |
|
|
button = gr.Button("Run", elem_id="run_button") |
|
|
result = ImageSlider( |
|
|
interactive=False, label="Generated Image", elem_id="result-image", position=0.1 |
|
|
) |
|
|
with gr.Group(elem_id="share-btn-container", visible=False) as share_group: |
|
|
community_icon = gr.HTML(community_icon_html) |
|
|
loading_icon = gr.HTML(loading_icon_html) |
|
|
share_button = gr.Button("Share to community", elem_id="share-btn") |
|
|
with gr.Accordion("Advanced options", open=False): |
|
|
negative = gr.Textbox(label="Negative Prompt") |
|
|
weight = gr.Slider(0, 10, value=0.9, step=0.1, label="LoRA weight") |
|
|
face_strength = gr.Slider(0, 2, value=0.85, step=0.01, label="Face strength", info="Higher values increase the face likeness but reduce the creative liberty of the models") |
|
|
image_strength = gr.Slider(0, 1, value=0.15, step=0.01, label="Image strength", info="Higher values increase the similarity with the structure/colors of the original photo") |
|
|
guidance_scale = gr.Slider(0, 50, value=7, step=0.1, label="Guidance Scale") |
|
|
depth_control_scale = gr.Slider(0, 1, value=0.8, step=0.01, label="Zoe Depth ControlNet strenght") |
|
|
prompt_title = gr.Markdown( |
|
|
value="### Click on a LoRA in the gallery to select it", |
|
|
visible=True, |
|
|
elem_id="selected_lora", |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
custom_model.input( |
|
|
fn=load_custom_lora, |
|
|
inputs=[custom_model], |
|
|
outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title], |
|
|
) |
|
|
custom_model_button.click( |
|
|
fn=remove_custom_lora, |
|
|
outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora] |
|
|
) |
|
|
gallery.select( |
|
|
fn=update_selection, |
|
|
inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative], |
|
|
outputs=[prompt_title, prompt, face_strength, image_strength, weight, depth_control_scale, negative, selected_state], |
|
|
show_progress=False |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt.submit( |
|
|
fn=check_selected, |
|
|
inputs=[selected_state, custom_loaded_lora], |
|
|
show_progress=False |
|
|
).success( |
|
|
fn=run_lora, |
|
|
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora], |
|
|
outputs=[result, share_group], |
|
|
) |
|
|
button.click( |
|
|
fn=check_selected, |
|
|
inputs=[selected_state, custom_loaded_lora], |
|
|
show_progress=False |
|
|
).success( |
|
|
fn=run_lora, |
|
|
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora], |
|
|
outputs=[result, share_group], |
|
|
) |
|
|
share_button.click(None, [], [], js=share_js) |
|
|
demo.load(fn=classify_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], js=js) |
|
|
|
|
|
demo.queue(default_concurrency_limit=None) |
|
|
demo.launch(share=True) |