Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -28,7 +28,7 @@ from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInst
|
|
| 28 |
from controlnet_aux import ZoeDetector
|
| 29 |
|
| 30 |
from compel import Compel, ReturnedEmbeddingsType
|
| 31 |
-
from gradio_imageslider import ImageSlider
|
| 32 |
|
| 33 |
with open("sdxl_loras.json", "r") as file:
|
| 34 |
data = json.load(file)
|
|
@@ -205,13 +205,13 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
| 205 |
del lora_model
|
| 206 |
gc.collect()
|
| 207 |
|
| 208 |
-
def run_lora(
|
| 209 |
global last_lora, last_merged, last_fused, pipe
|
| 210 |
-
print("Images:", images)
|
| 211 |
-
print("Face image", images[0])
|
| 212 |
-
face_image = images[0]
|
| 213 |
face_image = center_crop_image_as_square(face_image)
|
| 214 |
-
print("Cropped image:", face_image)
|
| 215 |
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 216 |
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
|
| 217 |
face_emb = face_info['embedding']
|
|
@@ -301,7 +301,7 @@ def run_lora(images, prompt, negative, lora_scale, selected_state, face_strength
|
|
| 301 |
).images[0]
|
| 302 |
last_lora = repo_name
|
| 303 |
gc.collect()
|
| 304 |
-
return
|
| 305 |
|
| 306 |
def shuffle_gallery(sdxl_loras):
|
| 307 |
random.shuffle(sdxl_loras)
|
|
@@ -328,7 +328,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 328 |
with gr.Row(elem_id="main_app"):
|
| 329 |
with gr.Column(scale=2):
|
| 330 |
with gr.Group(elem_id="gallery_box"):
|
| 331 |
-
photo =
|
| 332 |
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected", )
|
| 333 |
order_gallery = gr.Radio(choices=["random", "likes"], value="random", label="Order by", elem_id="order_radio")
|
| 334 |
#new_gallery = gr.Gallery(
|
|
|
|
| 28 |
from controlnet_aux import ZoeDetector
|
| 29 |
|
| 30 |
from compel import Compel, ReturnedEmbeddingsType
|
| 31 |
+
#from gradio_imageslider import ImageSlider
|
| 32 |
|
| 33 |
with open("sdxl_loras.json", "r") as file:
|
| 34 |
data = json.load(file)
|
|
|
|
| 205 |
del lora_model
|
| 206 |
gc.collect()
|
| 207 |
|
| 208 |
+
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
|
| 209 |
global last_lora, last_merged, last_fused, pipe
|
| 210 |
+
#print("Images:", images)
|
| 211 |
+
#print("Face image", images[0])
|
| 212 |
+
#face_image = images[0]
|
| 213 |
face_image = center_crop_image_as_square(face_image)
|
| 214 |
+
#print("Cropped image:", face_image)
|
| 215 |
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 216 |
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
|
| 217 |
face_emb = face_info['embedding']
|
|
|
|
| 301 |
).images[0]
|
| 302 |
last_lora = repo_name
|
| 303 |
gc.collect()
|
| 304 |
+
return image, gr.update(visible=True)
|
| 305 |
|
| 306 |
def shuffle_gallery(sdxl_loras):
|
| 307 |
random.shuffle(sdxl_loras)
|
|
|
|
| 328 |
with gr.Row(elem_id="main_app"):
|
| 329 |
with gr.Column(scale=2):
|
| 330 |
with gr.Group(elem_id="gallery_box"):
|
| 331 |
+
photo = gr.Image(label="Upload a picture of yourself", interactive=True, type="pil")
|
| 332 |
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected", )
|
| 333 |
order_gallery = gr.Radio(choices=["random", "likes"], value="random", label="Order by", elem_id="order_radio")
|
| 334 |
#new_gallery = gr.Gallery(
|