Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -25,17 +25,18 @@ base_model = "black-forest-labs/FLUX.1-dev"
|
|
| 25 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 26 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
| 27 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
|
| 28 |
-
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
| 39 |
|
| 40 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
| 41 |
|
|
@@ -46,7 +47,7 @@ class calculateDuration:
|
|
| 46 |
def __enter__(self):
|
| 47 |
self.start_time = time.time()
|
| 48 |
return self
|
| 49 |
-
|
| 50 |
def __exit__(self, exc_type, exc_value, traceback):
|
| 51 |
self.end_time = time.time()
|
| 52 |
self.elapsed_time = self.end_time - self.start_time
|
|
@@ -66,7 +67,7 @@ def update_selection(evt: gr.SelectData, selected_indices, width, height):
|
|
| 66 |
selected_indices.append(selected_index)
|
| 67 |
else:
|
| 68 |
gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.")
|
| 69 |
-
return(
|
| 70 |
gr.update(),
|
| 71 |
gr.update(),
|
| 72 |
gr.update(),
|
|
@@ -80,19 +81,19 @@ def update_selection(evt: gr.SelectData, selected_indices, width, height):
|
|
| 80 |
)
|
| 81 |
|
| 82 |
# Initialize outputs
|
| 83 |
-
selected_info_1 = ""
|
| 84 |
-
selected_info_2 = ""
|
| 85 |
lora_scale_1 = 0.95
|
| 86 |
lora_scale_2 = 0.95
|
| 87 |
lora_image_1 = None
|
| 88 |
lora_image_2 = None
|
| 89 |
if len(selected_indices) >= 1:
|
| 90 |
lora1 = loras[selected_indices[0]]
|
| 91 |
-
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](
|
| 92 |
lora_image_1 = lora1['image']
|
| 93 |
if len(selected_indices) >= 2:
|
| 94 |
lora2 = loras[selected_indices[1]]
|
| 95 |
-
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](
|
| 96 |
lora_image_2 = lora2['image']
|
| 97 |
|
| 98 |
# Update prompt placeholder based on last selected LoRA
|
|
@@ -128,11 +129,11 @@ def remove_lora_1(selected_indices):
|
|
| 128 |
lora_image_2 = None
|
| 129 |
if len(selected_indices) >= 1:
|
| 130 |
lora1 = loras[selected_indices[0]]
|
| 131 |
-
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](
|
| 132 |
lora_image_1 = lora1['image']
|
| 133 |
if len(selected_indices) >= 2:
|
| 134 |
lora2 = loras[selected_indices[1]]
|
| 135 |
-
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](
|
| 136 |
lora_image_2 = lora2['image']
|
| 137 |
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2
|
| 138 |
|
|
@@ -149,11 +150,11 @@ def remove_lora_2(selected_indices):
|
|
| 149 |
lora_image_2 = None
|
| 150 |
if len(selected_indices) >= 1:
|
| 151 |
lora1 = loras[selected_indices[0]]
|
| 152 |
-
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](
|
| 153 |
lora_image_1 = lora1['image']
|
| 154 |
if len(selected_indices) >= 2:
|
| 155 |
lora2 = loras[selected_indices[1]]
|
| 156 |
-
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](
|
| 157 |
lora_image_2 = lora2['image']
|
| 158 |
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2
|
| 159 |
|
|
@@ -163,8 +164,8 @@ def randomize_loras(selected_indices):
|
|
| 163 |
selected_indices = random.sample(range(len(loras)), 2)
|
| 164 |
lora1 = loras[selected_indices[0]]
|
| 165 |
lora2 = loras[selected_indices[1]]
|
| 166 |
-
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](
|
| 167 |
-
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](
|
| 168 |
lora_scale_1 = 0.95
|
| 169 |
lora_scale_2 = 0.95
|
| 170 |
lora_image_1 = lora1['image']
|
|
@@ -173,7 +174,7 @@ def randomize_loras(selected_indices):
|
|
| 173 |
|
| 174 |
@spaces.GPU(duration=70)
|
| 175 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
| 176 |
-
print("
|
| 177 |
pipe.to("cuda")
|
| 178 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 179 |
with calculateDuration("Generating image"):
|
|
@@ -208,8 +209,8 @@ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps
|
|
| 208 |
joint_attention_kwargs={"scale": 1.0},
|
| 209 |
output_type="pil",
|
| 210 |
).images[0]
|
| 211 |
-
return final_image
|
| 212 |
-
|
| 213 |
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, progress=gr.Progress(track_tqdm=True)):
|
| 214 |
if not selected_indices:
|
| 215 |
raise gr.Error("You must select at least one LoRA before proceeding.")
|
|
@@ -235,27 +236,29 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
| 235 |
|
| 236 |
# Load LoRA weights with respective scales
|
| 237 |
lora_names = []
|
|
|
|
| 238 |
with calculateDuration("Loading LoRA weights"):
|
| 239 |
for idx, lora in enumerate(selected_loras):
|
| 240 |
lora_name = f"lora_{idx}"
|
| 241 |
lora_names.append(lora_name)
|
|
|
|
| 242 |
lora_path = lora['repo']
|
| 243 |
-
|
| 244 |
if image_input is not None:
|
| 245 |
-
if
|
| 246 |
-
pipe_i2i.load_lora_weights(lora_path, weight_name=
|
| 247 |
else:
|
| 248 |
pipe_i2i.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
|
| 249 |
else:
|
| 250 |
-
if
|
| 251 |
-
pipe.load_lora_weights(lora_path, weight_name=
|
| 252 |
else:
|
| 253 |
pipe.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
|
| 254 |
-
print(lora_names)
|
| 255 |
if image_input is not None:
|
| 256 |
-
pipe_i2i.set_adapters(lora_names, adapter_weights=
|
| 257 |
else:
|
| 258 |
-
pipe.set_adapters(lora_names, adapter_weights=
|
| 259 |
# Set random seed for reproducibility
|
| 260 |
with calculateDuration("Randomizing seed"):
|
| 261 |
if randomize_seed:
|
|
@@ -271,7 +274,7 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
| 271 |
final_image = None
|
| 272 |
step_counter = 0
|
| 273 |
for image in image_generator:
|
| 274 |
-
step_counter+=1
|
| 275 |
final_image = image
|
| 276 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
| 277 |
yield image, seed, gr.update(value=progress_bar, visible=True)
|
|
@@ -282,7 +285,7 @@ def get_huggingface_safetensors(link):
|
|
| 282 |
if len(split_link) == 2:
|
| 283 |
model_card = ModelCard.load(link)
|
| 284 |
base_model = model_card.data.get("base_model")
|
| 285 |
-
print(base_model)
|
| 286 |
if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
|
| 287 |
raise Exception("Not a FLUX LoRA!")
|
| 288 |
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
|
@@ -304,13 +307,26 @@ def get_huggingface_safetensors(link):
|
|
| 304 |
if not safetensors_name:
|
| 305 |
raise Exception("No *.safetensors file found in the repository")
|
| 306 |
return split_link[1], link, safetensors_name, trigger_word, image_url
|
|
|
|
|
|
|
| 307 |
|
| 308 |
def check_custom_model(link):
|
| 309 |
-
if link.
|
| 310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
link_split = link.split("huggingface.co/")
|
| 312 |
return get_huggingface_safetensors(link_split[1])
|
| 313 |
-
|
|
|
|
|
|
|
|
|
|
| 314 |
return get_huggingface_safetensors(link)
|
| 315 |
|
| 316 |
def add_custom_lora(custom_lora, selected_indices):
|
|
@@ -319,18 +335,6 @@ def add_custom_lora(custom_lora, selected_indices):
|
|
| 319 |
try:
|
| 320 |
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
|
| 321 |
print(f"Loaded custom LoRA: {repo}")
|
| 322 |
-
card = f'''
|
| 323 |
-
<div class="custom_lora_card">
|
| 324 |
-
<span>Loaded custom LoRA:</span>
|
| 325 |
-
<div class="card_internal">
|
| 326 |
-
<img src="{image}" />
|
| 327 |
-
<div>
|
| 328 |
-
<h3>{title}</h3>
|
| 329 |
-
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
|
| 330 |
-
</div>
|
| 331 |
-
</div>
|
| 332 |
-
</div>
|
| 333 |
-
'''
|
| 334 |
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
|
| 335 |
if existing_item_index is None:
|
| 336 |
new_item = {
|
|
@@ -340,7 +344,7 @@ def add_custom_lora(custom_lora, selected_indices):
|
|
| 340 |
"weights": path,
|
| 341 |
"trigger_word": trigger_word
|
| 342 |
}
|
| 343 |
-
print(new_item)
|
| 344 |
existing_item_index = len(loras)
|
| 345 |
loras.append(new_item)
|
| 346 |
|
|
@@ -349,32 +353,42 @@ def add_custom_lora(custom_lora, selected_indices):
|
|
| 349 |
# Update selected_indices if there's room
|
| 350 |
if len(selected_indices) < 2:
|
| 351 |
selected_indices.append(existing_item_index)
|
| 352 |
-
selected_info_1 = ""
|
| 353 |
-
selected_info_2 = ""
|
| 354 |
-
lora_scale_1 = 0.95
|
| 355 |
-
lora_scale_2 = 0.95
|
| 356 |
-
lora_image_1 = None
|
| 357 |
-
lora_image_2 = None
|
| 358 |
-
if len(selected_indices) >= 1:
|
| 359 |
-
lora1 = loras[selected_indices[0]]
|
| 360 |
-
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
| 361 |
-
lora_image_1 = lora1['image']
|
| 362 |
-
if len(selected_indices) >= 2:
|
| 363 |
-
lora2 = loras[selected_indices[1]]
|
| 364 |
-
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
| 365 |
-
lora_image_2 = lora2['image']
|
| 366 |
-
return (gr.update(visible=True, value=card), gr.update(visible=True), gr.update(value=gallery_items),
|
| 367 |
-
selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2)
|
| 368 |
else:
|
| 369 |
-
|
| 370 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
except Exception as e:
|
| 372 |
print(e)
|
| 373 |
-
|
|
|
|
| 374 |
else:
|
| 375 |
-
return gr.
|
| 376 |
|
| 377 |
-
def remove_custom_lora(
|
| 378 |
global loras
|
| 379 |
if loras:
|
| 380 |
custom_lora_repo = loras[-1]['repo']
|
|
@@ -387,21 +401,30 @@ def remove_custom_lora(custom_lora_info, custom_lora_button, selected_indices):
|
|
| 387 |
# Update gallery
|
| 388 |
gallery_items = [(item["image"], item["title"]) for item in loras]
|
| 389 |
# Update selected_info and images
|
| 390 |
-
selected_info_1 = ""
|
| 391 |
-
selected_info_2 = ""
|
| 392 |
lora_scale_1 = 0.95
|
| 393 |
lora_scale_2 = 0.95
|
| 394 |
lora_image_1 = None
|
| 395 |
lora_image_2 = None
|
| 396 |
if len(selected_indices) >= 1:
|
| 397 |
lora1 = loras[selected_indices[0]]
|
| 398 |
-
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](
|
| 399 |
lora_image_1 = lora1['image']
|
| 400 |
if len(selected_indices) >= 2:
|
| 401 |
lora2 = loras[selected_indices[1]]
|
| 402 |
-
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](
|
| 403 |
lora_image_2 = lora2['image']
|
| 404 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
|
| 406 |
run_lora.zerogpu = True
|
| 407 |
|
|
@@ -410,6 +433,7 @@ css = '''
|
|
| 410 |
#title{text-align: center}
|
| 411 |
#title h1{font-size: 3em; display:inline-flex; align-items:center}
|
| 412 |
#title img{width: 100px; margin-right: 0.5em}
|
|
|
|
| 413 |
#gallery .grid-wrap{height: 5vh}
|
| 414 |
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
|
| 415 |
.custom_lora_card{margin-bottom: 1em}
|
|
@@ -460,6 +484,11 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
|
| 460 |
remove_button_2 = gr.Button("Remove", size="sm")
|
| 461 |
with gr.Row():
|
| 462 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 463 |
gallery = gr.Gallery(
|
| 464 |
[(item["image"], item["title"]) for item in loras],
|
| 465 |
label="LoRA Gallery",
|
|
@@ -467,11 +496,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
|
| 467 |
columns=5,
|
| 468 |
elem_id="gallery"
|
| 469 |
)
|
| 470 |
-
with gr.Group():
|
| 471 |
-
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
|
| 472 |
-
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
| 473 |
-
custom_lora_info = gr.HTML(visible=False)
|
| 474 |
-
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
| 475 |
with gr.Column():
|
| 476 |
progress_bar = gr.Markdown(elem_id="progress", visible=False)
|
| 477 |
result = gr.Image(label="Generated Image")
|
|
@@ -484,15 +508,15 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
|
| 484 |
with gr.Row():
|
| 485 |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
| 486 |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
| 487 |
-
|
| 488 |
with gr.Row():
|
| 489 |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
| 490 |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
| 491 |
-
|
| 492 |
with gr.Row():
|
| 493 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 494 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 495 |
-
|
| 496 |
gallery.select(
|
| 497 |
update_selection,
|
| 498 |
inputs=[selected_indices, width, height],
|
|
@@ -513,15 +537,15 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
|
| 513 |
inputs=[selected_indices],
|
| 514 |
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
| 515 |
)
|
| 516 |
-
|
| 517 |
add_custom_lora,
|
| 518 |
inputs=[custom_lora, selected_indices],
|
| 519 |
-
outputs=[
|
| 520 |
)
|
| 521 |
-
|
| 522 |
remove_custom_lora,
|
| 523 |
-
inputs=[
|
| 524 |
-
outputs=[
|
| 525 |
)
|
| 526 |
gr.on(
|
| 527 |
triggers=[generate_button.click, prompt.submit],
|
|
|
|
| 25 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 26 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
| 27 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
|
| 28 |
+
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
| 29 |
+
base_model,
|
| 30 |
+
vae=good_vae,
|
| 31 |
+
transformer=pipe.transformer,
|
| 32 |
+
text_encoder=pipe.text_encoder,
|
| 33 |
+
tokenizer=pipe.tokenizer,
|
| 34 |
+
text_encoder_2=pipe.text_encoder_2,
|
| 35 |
+
tokenizer_2=pipe.tokenizer_2,
|
| 36 |
+
torch_dtype=dtype
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
MAX_SEED = 2**32 - 1
|
| 40 |
|
| 41 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
| 42 |
|
|
|
|
| 47 |
def __enter__(self):
|
| 48 |
self.start_time = time.time()
|
| 49 |
return self
|
| 50 |
+
|
| 51 |
def __exit__(self, exc_type, exc_value, traceback):
|
| 52 |
self.end_time = time.time()
|
| 53 |
self.elapsed_time = self.end_time - self.start_time
|
|
|
|
| 67 |
selected_indices.append(selected_index)
|
| 68 |
else:
|
| 69 |
gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.")
|
| 70 |
+
return (
|
| 71 |
gr.update(),
|
| 72 |
gr.update(),
|
| 73 |
gr.update(),
|
|
|
|
| 81 |
)
|
| 82 |
|
| 83 |
# Initialize outputs
|
| 84 |
+
selected_info_1 = "Select a LoRA 1"
|
| 85 |
+
selected_info_2 = "Select a LoRA 2"
|
| 86 |
lora_scale_1 = 0.95
|
| 87 |
lora_scale_2 = 0.95
|
| 88 |
lora_image_1 = None
|
| 89 |
lora_image_2 = None
|
| 90 |
if len(selected_indices) >= 1:
|
| 91 |
lora1 = loras[selected_indices[0]]
|
| 92 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
|
| 93 |
lora_image_1 = lora1['image']
|
| 94 |
if len(selected_indices) >= 2:
|
| 95 |
lora2 = loras[selected_indices[1]]
|
| 96 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
|
| 97 |
lora_image_2 = lora2['image']
|
| 98 |
|
| 99 |
# Update prompt placeholder based on last selected LoRA
|
|
|
|
| 129 |
lora_image_2 = None
|
| 130 |
if len(selected_indices) >= 1:
|
| 131 |
lora1 = loras[selected_indices[0]]
|
| 132 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
|
| 133 |
lora_image_1 = lora1['image']
|
| 134 |
if len(selected_indices) >= 2:
|
| 135 |
lora2 = loras[selected_indices[1]]
|
| 136 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
|
| 137 |
lora_image_2 = lora2['image']
|
| 138 |
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2
|
| 139 |
|
|
|
|
| 150 |
lora_image_2 = None
|
| 151 |
if len(selected_indices) >= 1:
|
| 152 |
lora1 = loras[selected_indices[0]]
|
| 153 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
|
| 154 |
lora_image_1 = lora1['image']
|
| 155 |
if len(selected_indices) >= 2:
|
| 156 |
lora2 = loras[selected_indices[1]]
|
| 157 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
|
| 158 |
lora_image_2 = lora2['image']
|
| 159 |
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2
|
| 160 |
|
|
|
|
| 164 |
selected_indices = random.sample(range(len(loras)), 2)
|
| 165 |
lora1 = loras[selected_indices[0]]
|
| 166 |
lora2 = loras[selected_indices[1]]
|
| 167 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
|
| 168 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
|
| 169 |
lora_scale_1 = 0.95
|
| 170 |
lora_scale_2 = 0.95
|
| 171 |
lora_image_1 = lora1['image']
|
|
|
|
| 174 |
|
| 175 |
@spaces.GPU(duration=70)
|
| 176 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
| 177 |
+
print("Generating image...")
|
| 178 |
pipe.to("cuda")
|
| 179 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 180 |
with calculateDuration("Generating image"):
|
|
|
|
| 209 |
joint_attention_kwargs={"scale": 1.0},
|
| 210 |
output_type="pil",
|
| 211 |
).images[0]
|
| 212 |
+
return final_image
|
| 213 |
+
|
| 214 |
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, progress=gr.Progress(track_tqdm=True)):
|
| 215 |
if not selected_indices:
|
| 216 |
raise gr.Error("You must select at least one LoRA before proceeding.")
|
|
|
|
| 236 |
|
| 237 |
# Load LoRA weights with respective scales
|
| 238 |
lora_names = []
|
| 239 |
+
lora_weights = []
|
| 240 |
with calculateDuration("Loading LoRA weights"):
|
| 241 |
for idx, lora in enumerate(selected_loras):
|
| 242 |
lora_name = f"lora_{idx}"
|
| 243 |
lora_names.append(lora_name)
|
| 244 |
+
lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2)
|
| 245 |
lora_path = lora['repo']
|
| 246 |
+
weight_name = lora.get("weights")
|
| 247 |
if image_input is not None:
|
| 248 |
+
if weight_name:
|
| 249 |
+
pipe_i2i.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True, adapter_name=lora_name)
|
| 250 |
else:
|
| 251 |
pipe_i2i.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
|
| 252 |
else:
|
| 253 |
+
if weight_name:
|
| 254 |
+
pipe.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True, adapter_name=lora_name)
|
| 255 |
else:
|
| 256 |
pipe.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
|
| 257 |
+
print("Loaded LoRAs:", lora_names)
|
| 258 |
if image_input is not None:
|
| 259 |
+
pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
|
| 260 |
else:
|
| 261 |
+
pipe.set_adapters(lora_names, adapter_weights=lora_weights)
|
| 262 |
# Set random seed for reproducibility
|
| 263 |
with calculateDuration("Randomizing seed"):
|
| 264 |
if randomize_seed:
|
|
|
|
| 274 |
final_image = None
|
| 275 |
step_counter = 0
|
| 276 |
for image in image_generator:
|
| 277 |
+
step_counter += 1
|
| 278 |
final_image = image
|
| 279 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
| 280 |
yield image, seed, gr.update(value=progress_bar, visible=True)
|
|
|
|
| 285 |
if len(split_link) == 2:
|
| 286 |
model_card = ModelCard.load(link)
|
| 287 |
base_model = model_card.data.get("base_model")
|
| 288 |
+
print(f"Base model: {base_model}")
|
| 289 |
if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
|
| 290 |
raise Exception("Not a FLUX LoRA!")
|
| 291 |
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
|
|
|
| 307 |
if not safetensors_name:
|
| 308 |
raise Exception("No *.safetensors file found in the repository")
|
| 309 |
return split_link[1], link, safetensors_name, trigger_word, image_url
|
| 310 |
+
else:
|
| 311 |
+
raise Exception("Invalid Hugging Face repository link")
|
| 312 |
|
| 313 |
def check_custom_model(link):
|
| 314 |
+
if link.endswith(".safetensors"):
|
| 315 |
+
# Treat as direct link to the LoRA weights
|
| 316 |
+
title = os.path.basename(link)
|
| 317 |
+
repo = link
|
| 318 |
+
path = None # No specific weight name
|
| 319 |
+
trigger_word = ""
|
| 320 |
+
image_url = None
|
| 321 |
+
return title, repo, path, trigger_word, image_url
|
| 322 |
+
elif link.startswith("https://"):
|
| 323 |
+
if "huggingface.co" in link:
|
| 324 |
link_split = link.split("huggingface.co/")
|
| 325 |
return get_huggingface_safetensors(link_split[1])
|
| 326 |
+
else:
|
| 327 |
+
raise Exception("Unsupported URL")
|
| 328 |
+
else:
|
| 329 |
+
# Assume it's a Hugging Face model path
|
| 330 |
return get_huggingface_safetensors(link)
|
| 331 |
|
| 332 |
def add_custom_lora(custom_lora, selected_indices):
|
|
|
|
| 335 |
try:
|
| 336 |
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
|
| 337 |
print(f"Loaded custom LoRA: {repo}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
|
| 339 |
if existing_item_index is None:
|
| 340 |
new_item = {
|
|
|
|
| 344 |
"weights": path,
|
| 345 |
"trigger_word": trigger_word
|
| 346 |
}
|
| 347 |
+
print(f"New LoRA: {new_item}")
|
| 348 |
existing_item_index = len(loras)
|
| 349 |
loras.append(new_item)
|
| 350 |
|
|
|
|
| 353 |
# Update selected_indices if there's room
|
| 354 |
if len(selected_indices) < 2:
|
| 355 |
selected_indices.append(existing_item_index)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
else:
|
| 357 |
+
gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.")
|
| 358 |
+
|
| 359 |
+
# Update selected_info and images
|
| 360 |
+
selected_info_1 = "Select a LoRA 1"
|
| 361 |
+
selected_info_2 = "Select a LoRA 2"
|
| 362 |
+
lora_scale_1 = 0.95
|
| 363 |
+
lora_scale_2 = 0.95
|
| 364 |
+
lora_image_1 = None
|
| 365 |
+
lora_image_2 = None
|
| 366 |
+
if len(selected_indices) >= 1:
|
| 367 |
+
lora1 = loras[selected_indices[0]]
|
| 368 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
|
| 369 |
+
lora_image_1 = lora1['image']
|
| 370 |
+
if len(selected_indices) >= 2:
|
| 371 |
+
lora2 = loras[selected_indices[1]]
|
| 372 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
|
| 373 |
+
lora_image_2 = lora2['image']
|
| 374 |
+
return (
|
| 375 |
+
gr.update(value=gallery_items),
|
| 376 |
+
selected_info_1,
|
| 377 |
+
selected_info_2,
|
| 378 |
+
selected_indices,
|
| 379 |
+
lora_scale_1,
|
| 380 |
+
lora_scale_2,
|
| 381 |
+
lora_image_1,
|
| 382 |
+
lora_image_2
|
| 383 |
+
)
|
| 384 |
except Exception as e:
|
| 385 |
print(e)
|
| 386 |
+
gr.Error(str(e))
|
| 387 |
+
return gr.NoChange(), gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange(), gr.NoChange(), gr.NoChange()
|
| 388 |
else:
|
| 389 |
+
return gr.NoChange(), gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange(), gr.NoChange(), gr.NoChange()
|
| 390 |
|
| 391 |
+
def remove_custom_lora(selected_indices):
|
| 392 |
global loras
|
| 393 |
if loras:
|
| 394 |
custom_lora_repo = loras[-1]['repo']
|
|
|
|
| 401 |
# Update gallery
|
| 402 |
gallery_items = [(item["image"], item["title"]) for item in loras]
|
| 403 |
# Update selected_info and images
|
| 404 |
+
selected_info_1 = "Select a LoRA 1"
|
| 405 |
+
selected_info_2 = "Select a LoRA 2"
|
| 406 |
lora_scale_1 = 0.95
|
| 407 |
lora_scale_2 = 0.95
|
| 408 |
lora_image_1 = None
|
| 409 |
lora_image_2 = None
|
| 410 |
if len(selected_indices) >= 1:
|
| 411 |
lora1 = loras[selected_indices[0]]
|
| 412 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
|
| 413 |
lora_image_1 = lora1['image']
|
| 414 |
if len(selected_indices) >= 2:
|
| 415 |
lora2 = loras[selected_indices[1]]
|
| 416 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
|
| 417 |
lora_image_2 = lora2['image']
|
| 418 |
+
return (
|
| 419 |
+
gr.update(value=gallery_items),
|
| 420 |
+
selected_info_1,
|
| 421 |
+
selected_info_2,
|
| 422 |
+
selected_indices,
|
| 423 |
+
lora_scale_1,
|
| 424 |
+
lora_scale_2,
|
| 425 |
+
lora_image_1,
|
| 426 |
+
lora_image_2
|
| 427 |
+
)
|
| 428 |
|
| 429 |
run_lora.zerogpu = True
|
| 430 |
|
|
|
|
| 433 |
#title{text-align: center}
|
| 434 |
#title h1{font-size: 3em; display:inline-flex; align-items:center}
|
| 435 |
#title img{width: 100px; margin-right: 0.5em}
|
| 436 |
+
#gallery{height: 260px}
|
| 437 |
#gallery .grid-wrap{height: 5vh}
|
| 438 |
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
|
| 439 |
.custom_lora_card{margin-bottom: 1em}
|
|
|
|
| 484 |
remove_button_2 = gr.Button("Remove", size="sm")
|
| 485 |
with gr.Row():
|
| 486 |
with gr.Column():
|
| 487 |
+
with gr.Group():
|
| 488 |
+
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="multimodalart/vintage-ads-flux")
|
| 489 |
+
add_custom_lora_button = gr.Button("Add Custom LoRA")
|
| 490 |
+
remove_custom_lora_button = gr.Button("Remove Custom LoRA")
|
| 491 |
+
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
| 492 |
gallery = gr.Gallery(
|
| 493 |
[(item["image"], item["title"]) for item in loras],
|
| 494 |
label="LoRA Gallery",
|
|
|
|
| 496 |
columns=5,
|
| 497 |
elem_id="gallery"
|
| 498 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
with gr.Column():
|
| 500 |
progress_bar = gr.Markdown(elem_id="progress", visible=False)
|
| 501 |
result = gr.Image(label="Generated Image")
|
|
|
|
| 508 |
with gr.Row():
|
| 509 |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
| 510 |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
| 511 |
+
|
| 512 |
with gr.Row():
|
| 513 |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
| 514 |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
| 515 |
+
|
| 516 |
with gr.Row():
|
| 517 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 518 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 519 |
+
|
| 520 |
gallery.select(
|
| 521 |
update_selection,
|
| 522 |
inputs=[selected_indices, width, height],
|
|
|
|
| 537 |
inputs=[selected_indices],
|
| 538 |
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
| 539 |
)
|
| 540 |
+
add_custom_lora_button.click(
|
| 541 |
add_custom_lora,
|
| 542 |
inputs=[custom_lora, selected_indices],
|
| 543 |
+
outputs=[gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
| 544 |
)
|
| 545 |
+
remove_custom_lora_button.click(
|
| 546 |
remove_custom_lora,
|
| 547 |
+
inputs=[selected_indices],
|
| 548 |
+
outputs=[gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
| 549 |
)
|
| 550 |
gr.on(
|
| 551 |
triggers=[generate_button.click, prompt.submit],
|