Update index.html
Browse files- index.html +935 -19
index.html
CHANGED
|
@@ -1,19 +1,935 @@
|
|
| 1 |
-
<!
|
| 2 |
-
<html>
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>GPT-4o / GPT-Image-1 Generator yellow tint corrector</title>
|
| 7 |
+
<style>
|
| 8 |
+
* {
|
| 9 |
+
margin: 0;
|
| 10 |
+
padding: 0;
|
| 11 |
+
box-sizing: border-box;
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
body {
|
| 15 |
+
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
|
| 16 |
+
background: #f5f5f5;
|
| 17 |
+
padding: 20px;
|
| 18 |
+
min-height: 100vh;
|
| 19 |
+
display: flex;
|
| 20 |
+
flex-direction: column;
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
.container {
|
| 24 |
+
max-width: 1400px;
|
| 25 |
+
margin: 0 auto;
|
| 26 |
+
background: white;
|
| 27 |
+
padding: 30px;
|
| 28 |
+
border-radius: 8px;
|
| 29 |
+
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
|
| 30 |
+
flex: 1;
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
h1 {
|
| 34 |
+
font-size: 24px;
|
| 35 |
+
margin-bottom: 20px;
|
| 36 |
+
color: #333;
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
.upload-area {
|
| 40 |
+
border: 2px dashed #ccc;
|
| 41 |
+
border-radius: 4px;
|
| 42 |
+
padding: 40px;
|
| 43 |
+
text-align: center;
|
| 44 |
+
cursor: pointer;
|
| 45 |
+
background: #fafafa;
|
| 46 |
+
margin-bottom: 20px;
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
.upload-area:hover {
|
| 50 |
+
border-color: #999;
|
| 51 |
+
background: #f0f0f0;
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
.upload-area.dragover {
|
| 55 |
+
border-color: #4CAF50;
|
| 56 |
+
background: #f0f8f0;
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
input[type="file"] {
|
| 60 |
+
display: none;
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
.processing {
|
| 64 |
+
display: none;
|
| 65 |
+
text-align: center;
|
| 66 |
+
padding: 20px;
|
| 67 |
+
color: #666;
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
.progress-bar {
|
| 71 |
+
width: 100%;
|
| 72 |
+
height: 20px;
|
| 73 |
+
background: #f0f0f0;
|
| 74 |
+
border-radius: 10px;
|
| 75 |
+
overflow: hidden;
|
| 76 |
+
margin: 10px 0;
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
.progress-fill {
|
| 80 |
+
height: 100%;
|
| 81 |
+
background: #4CAF50;
|
| 82 |
+
transition: width 0.3s ease;
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
.results {
|
| 86 |
+
display: none;
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
.single-result {
|
| 90 |
+
display: none;
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
.bulk-result {
|
| 94 |
+
display: none;
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
.image-grid {
|
| 98 |
+
display: grid;
|
| 99 |
+
grid-template-columns: 1fr 1fr;
|
| 100 |
+
gap: 20px;
|
| 101 |
+
margin-bottom: 20px;
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
.gallery-grid {
|
| 105 |
+
display: grid;
|
| 106 |
+
grid-template-columns: repeat(4, 1fr);
|
| 107 |
+
gap: 15px;
|
| 108 |
+
margin-bottom: 20px;
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
.gallery-item {
|
| 112 |
+
border: 1px solid #ddd;
|
| 113 |
+
border-radius: 4px;
|
| 114 |
+
overflow: hidden;
|
| 115 |
+
cursor: pointer;
|
| 116 |
+
position: relative;
|
| 117 |
+
aspect-ratio: 1;
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
.gallery-item:hover {
|
| 121 |
+
box-shadow: 0 2px 8px rgba(0,0,0,0.15);
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
.gallery-item canvas {
|
| 125 |
+
width: 100%;
|
| 126 |
+
height: 100%;
|
| 127 |
+
object-fit: cover;
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
.gallery-more {
|
| 131 |
+
display: flex;
|
| 132 |
+
align-items: center;
|
| 133 |
+
justify-content: center;
|
| 134 |
+
background: #f0f0f0;
|
| 135 |
+
color: #666;
|
| 136 |
+
font-size: 24px;
|
| 137 |
+
font-weight: bold;
|
| 138 |
+
}
|
| 139 |
+
|
| 140 |
+
.image-container {
|
| 141 |
+
border: 1px solid #ddd;
|
| 142 |
+
border-radius: 4px;
|
| 143 |
+
padding: 10px;
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
.image-container h3 {
|
| 147 |
+
font-size: 14px;
|
| 148 |
+
margin-bottom: 10px;
|
| 149 |
+
color: #666;
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
canvas {
|
| 153 |
+
display: block;
|
| 154 |
+
width: 100%;
|
| 155 |
+
height: auto;
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
.controls {
|
| 159 |
+
display: flex;
|
| 160 |
+
gap: 10px;
|
| 161 |
+
flex-wrap: wrap;
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
button {
|
| 165 |
+
padding: 10px 20px;
|
| 166 |
+
background: #4CAF50;
|
| 167 |
+
color: white;
|
| 168 |
+
border: none;
|
| 169 |
+
border-radius: 4px;
|
| 170 |
+
cursor: pointer;
|
| 171 |
+
font-size: 14px;
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
button:hover {
|
| 175 |
+
background: #45a049;
|
| 176 |
+
}
|
| 177 |
+
|
| 178 |
+
button.secondary {
|
| 179 |
+
background: #757575;
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
button.secondary:hover {
|
| 183 |
+
background: #616161;
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
.info {
|
| 187 |
+
margin-top: 20px;
|
| 188 |
+
padding: 15px;
|
| 189 |
+
background: #f9f9f9;
|
| 190 |
+
border-radius: 4px;
|
| 191 |
+
font-size: 13px;
|
| 192 |
+
color: #666;
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
.modal {
|
| 196 |
+
display: none;
|
| 197 |
+
position: fixed;
|
| 198 |
+
top: 0;
|
| 199 |
+
left: 0;
|
| 200 |
+
right: 0;
|
| 201 |
+
bottom: 0;
|
| 202 |
+
background: rgba(0,0,0,0.8);
|
| 203 |
+
z-index: 1000;
|
| 204 |
+
padding: 20px;
|
| 205 |
+
}
|
| 206 |
+
|
| 207 |
+
.modal-content {
|
| 208 |
+
max-width: 90%;
|
| 209 |
+
max-height: 90%;
|
| 210 |
+
margin: auto;
|
| 211 |
+
position: relative;
|
| 212 |
+
top: 50%;
|
| 213 |
+
transform: translateY(-50%);
|
| 214 |
+
background: white;
|
| 215 |
+
border-radius: 8px;
|
| 216 |
+
padding: 20px;
|
| 217 |
+
}
|
| 218 |
+
|
| 219 |
+
.modal-close {
|
| 220 |
+
position: absolute;
|
| 221 |
+
top: 10px;
|
| 222 |
+
right: 10px;
|
| 223 |
+
font-size: 24px;
|
| 224 |
+
cursor: pointer;
|
| 225 |
+
background: none;
|
| 226 |
+
border: none;
|
| 227 |
+
color: #666;
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
.modal-image-container {
|
| 231 |
+
display: grid;
|
| 232 |
+
grid-template-columns: 1fr 1fr;
|
| 233 |
+
gap: 20px;
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
.modal-image {
|
| 237 |
+
text-align: center;
|
| 238 |
+
}
|
| 239 |
+
|
| 240 |
+
.modal-image h3 {
|
| 241 |
+
margin-bottom: 10px;
|
| 242 |
+
color: #666;
|
| 243 |
+
}
|
| 244 |
+
|
| 245 |
+
.modal-image canvas {
|
| 246 |
+
max-width: 100%;
|
| 247 |
+
height: auto;
|
| 248 |
+
}
|
| 249 |
+
|
| 250 |
+
footer {
|
| 251 |
+
text-align: center;
|
| 252 |
+
padding: 20px;
|
| 253 |
+
color: #666;
|
| 254 |
+
font-size: 12px;
|
| 255 |
+
}
|
| 256 |
+
|
| 257 |
+
footer a {
|
| 258 |
+
color: #4CAF50;
|
| 259 |
+
text-decoration: none;
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
footer a:hover {
|
| 263 |
+
text-decoration: underline;
|
| 264 |
+
}
|
| 265 |
+
|
| 266 |
+
@media (max-width: 768px) {
|
| 267 |
+
.image-grid {
|
| 268 |
+
grid-template-columns: 1fr;
|
| 269 |
+
}
|
| 270 |
+
|
| 271 |
+
.gallery-grid {
|
| 272 |
+
grid-template-columns: repeat(2, 1fr);
|
| 273 |
+
}
|
| 274 |
+
|
| 275 |
+
.modal-image-container {
|
| 276 |
+
grid-template-columns: 1fr;
|
| 277 |
+
}
|
| 278 |
+
}
|
| 279 |
+
</style>
|
| 280 |
+
</head>
|
| 281 |
+
<body>
|
| 282 |
+
<div class="container">
|
| 283 |
+
<h1>GPT-4o / GPT-Image-1 Generator yellow tint corrector</h1>
|
| 284 |
+
|
| 285 |
+
<div class="upload-area" id="uploadArea">
|
| 286 |
+
<p>Drop image(s) here or click to upload</p>
|
| 287 |
+
<p style="font-size: 12px; color: #999; margin-top: 10px;">Supports JPG, PNG, WebP • Multiple files supported</p>
|
| 288 |
+
<input type="file" id="fileInput" accept="image/*" multiple>
|
| 289 |
+
</div>
|
| 290 |
+
|
| 291 |
+
<div class="processing" id="processing">
|
| 292 |
+
<p>Processing <span id="currentFile">0</span> of <span id="totalFiles">0</span> images...</p>
|
| 293 |
+
<div class="progress-bar">
|
| 294 |
+
<div class="progress-fill" id="progressFill"></div>
|
| 295 |
+
</div>
|
| 296 |
+
</div>
|
| 297 |
+
|
| 298 |
+
<div class="results" id="results">
|
| 299 |
+
<div class="single-result" id="singleResult">
|
| 300 |
+
<div class="image-grid">
|
| 301 |
+
<div class="image-container">
|
| 302 |
+
<h3>Original</h3>
|
| 303 |
+
<canvas id="originalCanvas"></canvas>
|
| 304 |
+
</div>
|
| 305 |
+
<div class="image-container">
|
| 306 |
+
<h3>Corrected</h3>
|
| 307 |
+
<canvas id="correctedCanvas"></canvas>
|
| 308 |
+
</div>
|
| 309 |
+
</div>
|
| 310 |
+
|
| 311 |
+
<div class="controls">
|
| 312 |
+
<button onclick="downloadImage()">Download Corrected</button>
|
| 313 |
+
<button class="secondary" onclick="resetApp()">Process More Images</button>
|
| 314 |
+
</div>
|
| 315 |
+
</div>
|
| 316 |
+
|
| 317 |
+
<div class="bulk-result" id="bulkResult">
|
| 318 |
+
<h3 style="margin-bottom: 15px; color: #666;">Corrected Images</h3>
|
| 319 |
+
<div class="gallery-grid" id="galleryGrid"></div>
|
| 320 |
+
|
| 321 |
+
<div class="controls">
|
| 322 |
+
<button onclick="downloadAll()">Download All</button>
|
| 323 |
+
<button class="secondary" onclick="resetApp()">Process More Images</button>
|
| 324 |
+
</div>
|
| 325 |
+
</div>
|
| 326 |
+
|
| 327 |
+
<div class="info" id="info"></div>
|
| 328 |
+
</div>
|
| 329 |
+
</div>
|
| 330 |
+
|
| 331 |
+
<footer>
|
| 332 |
+
Created by <a href="https://x.com/multimodalart" target="_blank">multimodalart</a><br>
|
| 333 |
+
The images are processed on your browser and are never sent to a server
|
| 334 |
+
</footer>
|
| 335 |
+
|
| 336 |
+
<div class="modal" id="imageModal">
|
| 337 |
+
<div class="modal-content">
|
| 338 |
+
<button class="modal-close" onclick="closeModal()">×</button>
|
| 339 |
+
<div class="modal-image-container">
|
| 340 |
+
<div class="modal-image">
|
| 341 |
+
<h3>Original</h3>
|
| 342 |
+
<canvas id="modalOriginal"></canvas>
|
| 343 |
+
</div>
|
| 344 |
+
<div class="modal-image">
|
| 345 |
+
<h3>Corrected</h3>
|
| 346 |
+
<canvas id="modalCorrected"></canvas>
|
| 347 |
+
</div>
|
| 348 |
+
</div>
|
| 349 |
+
<div style="text-align: center; margin-top: 20px;">
|
| 350 |
+
<button onclick="downloadModalImage()">Download Corrected</button>
|
| 351 |
+
</div>
|
| 352 |
+
</div>
|
| 353 |
+
</div>
|
| 354 |
+
|
| 355 |
+
<script>
|
| 356 |
+
// Exact port of Python auto_white_balance_final() function
|
| 357 |
+
|
| 358 |
+
class ImageProcessor {
|
| 359 |
+
constructor() {
|
| 360 |
+
this.processedImages = [];
|
| 361 |
+
this.currentModalIndex = -1;
|
| 362 |
+
this.setupEventListeners();
|
| 363 |
+
}
|
| 364 |
+
|
| 365 |
+
setupEventListeners() {
|
| 366 |
+
const uploadArea = document.getElementById('uploadArea');
|
| 367 |
+
const fileInput = document.getElementById('fileInput');
|
| 368 |
+
|
| 369 |
+
uploadArea.addEventListener('click', () => fileInput.click());
|
| 370 |
+
fileInput.addEventListener('change', (e) => this.handleFiles(e.target.files));
|
| 371 |
+
|
| 372 |
+
uploadArea.addEventListener('dragover', (e) => {
|
| 373 |
+
e.preventDefault();
|
| 374 |
+
uploadArea.classList.add('dragover');
|
| 375 |
+
});
|
| 376 |
+
|
| 377 |
+
uploadArea.addEventListener('dragleave', () => {
|
| 378 |
+
uploadArea.classList.remove('dragover');
|
| 379 |
+
});
|
| 380 |
+
|
| 381 |
+
uploadArea.addEventListener('drop', (e) => {
|
| 382 |
+
e.preventDefault();
|
| 383 |
+
uploadArea.classList.remove('dragover');
|
| 384 |
+
if (e.dataTransfer.files.length > 0) {
|
| 385 |
+
this.handleFiles(e.dataTransfer.files);
|
| 386 |
+
}
|
| 387 |
+
});
|
| 388 |
+
}
|
| 389 |
+
|
| 390 |
+
handleFiles(files) {
|
| 391 |
+
const imageFiles = Array.from(files).filter(file => file.type.startsWith('image/'));
|
| 392 |
+
if (imageFiles.length === 0) {
|
| 393 |
+
alert('Please select image files');
|
| 394 |
+
return;
|
| 395 |
+
}
|
| 396 |
+
|
| 397 |
+
this.processedImages = [];
|
| 398 |
+
this.processMultipleImages(imageFiles);
|
| 399 |
+
}
|
| 400 |
+
|
| 401 |
+
async processMultipleImages(files) {
|
| 402 |
+
document.getElementById('uploadArea').style.display = 'none';
|
| 403 |
+
document.getElementById('processing').style.display = 'block';
|
| 404 |
+
document.getElementById('totalFiles').textContent = files.length;
|
| 405 |
+
|
| 406 |
+
for (let i = 0; i < files.length; i++) {
|
| 407 |
+
document.getElementById('currentFile').textContent = i + 1;
|
| 408 |
+
document.getElementById('progressFill').style.width = `${((i + 1) / files.length) * 100}%`;
|
| 409 |
+
|
| 410 |
+
await this.processFile(files[i]);
|
| 411 |
+
}
|
| 412 |
+
|
| 413 |
+
document.getElementById('processing').style.display = 'none';
|
| 414 |
+
this.displayResults();
|
| 415 |
+
}
|
| 416 |
+
|
| 417 |
+
processFile(file) {
|
| 418 |
+
return new Promise((resolve) => {
|
| 419 |
+
const reader = new FileReader();
|
| 420 |
+
reader.onload = (e) => {
|
| 421 |
+
const img = new Image();
|
| 422 |
+
img.onload = () => {
|
| 423 |
+
const result = this.processImage(img);
|
| 424 |
+
this.processedImages.push({
|
| 425 |
+
name: file.name,
|
| 426 |
+
original: result.original,
|
| 427 |
+
corrected: result.corrected,
|
| 428 |
+
width: img.width,
|
| 429 |
+
height: img.height
|
| 430 |
+
});
|
| 431 |
+
resolve();
|
| 432 |
+
};
|
| 433 |
+
img.src = e.target.result;
|
| 434 |
+
};
|
| 435 |
+
reader.readAsDataURL(file);
|
| 436 |
+
});
|
| 437 |
+
}
|
| 438 |
+
|
| 439 |
+
processImage(img) {
|
| 440 |
+
// Create canvases for processing
|
| 441 |
+
const originalCanvas = document.createElement('canvas');
|
| 442 |
+
const correctedCanvas = document.createElement('canvas');
|
| 443 |
+
|
| 444 |
+
originalCanvas.width = img.width;
|
| 445 |
+
originalCanvas.height = img.height;
|
| 446 |
+
correctedCanvas.width = img.width;
|
| 447 |
+
correctedCanvas.height = img.height;
|
| 448 |
+
|
| 449 |
+
const originalCtx = originalCanvas.getContext('2d');
|
| 450 |
+
const correctedCtx = correctedCanvas.getContext('2d');
|
| 451 |
+
|
| 452 |
+
// Draw original
|
| 453 |
+
originalCtx.drawImage(img, 0, 0);
|
| 454 |
+
|
| 455 |
+
// Get image data
|
| 456 |
+
const imageData = originalCtx.getImageData(0, 0, img.width, img.height);
|
| 457 |
+
|
| 458 |
+
// Apply exact algorithm from Python
|
| 459 |
+
const correctedData = this.autoWhiteBalanceFinal(imageData);
|
| 460 |
+
|
| 461 |
+
// Draw corrected
|
| 462 |
+
correctedCtx.putImageData(correctedData, 0, 0);
|
| 463 |
+
|
| 464 |
+
return {
|
| 465 |
+
original: originalCanvas,
|
| 466 |
+
corrected: correctedCanvas
|
| 467 |
+
};
|
| 468 |
+
}
|
| 469 |
+
|
| 470 |
+
displayResults() {
|
| 471 |
+
document.getElementById('results').style.display = 'block';
|
| 472 |
+
|
| 473 |
+
if (this.processedImages.length === 1) {
|
| 474 |
+
// Single image display
|
| 475 |
+
document.getElementById('singleResult').style.display = 'block';
|
| 476 |
+
document.getElementById('bulkResult').style.display = 'none';
|
| 477 |
+
|
| 478 |
+
const original = document.getElementById('originalCanvas');
|
| 479 |
+
const corrected = document.getElementById('correctedCanvas');
|
| 480 |
+
|
| 481 |
+
original.width = this.processedImages[0].width;
|
| 482 |
+
original.height = this.processedImages[0].height;
|
| 483 |
+
corrected.width = this.processedImages[0].width;
|
| 484 |
+
corrected.height = this.processedImages[0].height;
|
| 485 |
+
|
| 486 |
+
original.getContext('2d').drawImage(this.processedImages[0].original, 0, 0);
|
| 487 |
+
corrected.getContext('2d').drawImage(this.processedImages[0].corrected, 0, 0);
|
| 488 |
+
|
| 489 |
+
} else {
|
| 490 |
+
// Bulk display
|
| 491 |
+
document.getElementById('singleResult').style.display = 'none';
|
| 492 |
+
document.getElementById('bulkResult').style.display = 'block';
|
| 493 |
+
|
| 494 |
+
const galleryGrid = document.getElementById('galleryGrid');
|
| 495 |
+
galleryGrid.innerHTML = '';
|
| 496 |
+
|
| 497 |
+
const maxDisplay = 16;
|
| 498 |
+
const displayCount = Math.min(this.processedImages.length, maxDisplay);
|
| 499 |
+
|
| 500 |
+
for (let i = 0; i < displayCount; i++) {
|
| 501 |
+
if (i === 15 && this.processedImages.length > maxDisplay) {
|
| 502 |
+
// Show "more" indicator
|
| 503 |
+
const moreDiv = document.createElement('div');
|
| 504 |
+
moreDiv.className = 'gallery-item gallery-more';
|
| 505 |
+
moreDiv.textContent = `+${this.processedImages.length - 15}`;
|
| 506 |
+
moreDiv.onclick = () => this.showAllImages();
|
| 507 |
+
galleryGrid.appendChild(moreDiv);
|
| 508 |
+
} else {
|
| 509 |
+
const item = document.createElement('div');
|
| 510 |
+
item.className = 'gallery-item';
|
| 511 |
+
item.onclick = () => this.showModal(i);
|
| 512 |
+
|
| 513 |
+
const canvas = document.createElement('canvas');
|
| 514 |
+
const ctx = canvas.getContext('2d');
|
| 515 |
+
canvas.width = 200;
|
| 516 |
+
canvas.height = 200;
|
| 517 |
+
|
| 518 |
+
// Draw centered crop
|
| 519 |
+
const img = this.processedImages[i].corrected;
|
| 520 |
+
const scale = Math.max(200 / img.width, 200 / img.height);
|
| 521 |
+
const w = img.width * scale;
|
| 522 |
+
const h = img.height * scale;
|
| 523 |
+
ctx.drawImage(img, (200 - w) / 2, (200 - h) / 2, w, h);
|
| 524 |
+
|
| 525 |
+
item.appendChild(canvas);
|
| 526 |
+
galleryGrid.appendChild(item);
|
| 527 |
+
}
|
| 528 |
+
}
|
| 529 |
+
}
|
| 530 |
+
|
| 531 |
+
document.getElementById('info').innerHTML = `
|
| 532 |
+
Processed ${this.processedImages.length} image${this.processedImages.length > 1 ? 's' : ''}
|
| 533 |
+
`;
|
| 534 |
+
}
|
| 535 |
+
|
| 536 |
+
showModal(index) {
|
| 537 |
+
this.currentModalIndex = index;
|
| 538 |
+
const modal = document.getElementById('imageModal');
|
| 539 |
+
const modalOriginal = document.getElementById('modalOriginal');
|
| 540 |
+
const modalCorrected = document.getElementById('modalCorrected');
|
| 541 |
+
|
| 542 |
+
const img = this.processedImages[index];
|
| 543 |
+
|
| 544 |
+
modalOriginal.width = img.width;
|
| 545 |
+
modalOriginal.height = img.height;
|
| 546 |
+
modalCorrected.width = img.width;
|
| 547 |
+
modalCorrected.height = img.height;
|
| 548 |
+
|
| 549 |
+
modalOriginal.getContext('2d').drawImage(img.original, 0, 0);
|
| 550 |
+
modalCorrected.getContext('2d').drawImage(img.corrected, 0, 0);
|
| 551 |
+
|
| 552 |
+
modal.style.display = 'block';
|
| 553 |
+
}
|
| 554 |
+
|
| 555 |
+
showAllImages() {
|
| 556 |
+
// In a real implementation, this could show a paginated view
|
| 557 |
+
alert(`Showing all ${this.processedImages.length} images would be implemented here`);
|
| 558 |
+
}
|
| 559 |
+
|
| 560 |
+
autoWhiteBalanceFinal(imageData) {
|
| 561 |
+
const data = new Float32Array(imageData.data);
|
| 562 |
+
const width = imageData.width;
|
| 563 |
+
const height = imageData.height;
|
| 564 |
+
|
| 565 |
+
// Step 1: Robust color correction
|
| 566 |
+
const { avgR, avgG, avgB } = this.robustMean(data);
|
| 567 |
+
|
| 568 |
+
// Detect yellow tint severity
|
| 569 |
+
const yellowFactor = ((avgR + avgG) / 2) / (avgB + 1);
|
| 570 |
+
const yellowSeverity = Math.min(Math.max((yellowFactor - 1.0) / 0.5, 0), 1);
|
| 571 |
+
|
| 572 |
+
// Adaptive correction based on tint level
|
| 573 |
+
const targetGray = 165 + yellowSeverity * 20;
|
| 574 |
+
const blueBoost = 1.08 + yellowSeverity * 0.12;
|
| 575 |
+
const redReduction = 0.96 - yellowSeverity * 0.04;
|
| 576 |
+
|
| 577 |
+
let scaleB = (targetGray * blueBoost) / avgB;
|
| 578 |
+
let scaleG = targetGray / avgG;
|
| 579 |
+
let scaleR = (targetGray * redReduction) / avgR;
|
| 580 |
+
|
| 581 |
+
// Apply safety limits
|
| 582 |
+
scaleB = Math.min(Math.max(scaleB, 0.7), 3.0);
|
| 583 |
+
scaleG = Math.min(Math.max(scaleG, 0.7), 2.5);
|
| 584 |
+
scaleR = Math.min(Math.max(scaleR, 0.7), 2.5);
|
| 585 |
+
|
| 586 |
+
// Apply channel scaling
|
| 587 |
+
for (let i = 0; i < data.length; i += 4) {
|
| 588 |
+
data[i] *= scaleR;
|
| 589 |
+
data[i + 1] *= scaleG;
|
| 590 |
+
data[i + 2] *= scaleB;
|
| 591 |
+
}
|
| 592 |
+
|
| 593 |
+
// Clip
|
| 594 |
+
for (let i = 0; i < data.length; i += 4) {
|
| 595 |
+
data[i] = Math.min(255, Math.max(0, data[i]));
|
| 596 |
+
data[i + 1] = Math.min(255, Math.max(0, data[i + 1]));
|
| 597 |
+
data[i + 2] = Math.min(255, Math.max(0, data[i + 2]));
|
| 598 |
+
}
|
| 599 |
+
|
| 600 |
+
// Step 2: Adaptive exposure compensation
|
| 601 |
+
const meanBrightness = this.calculateMeanBrightness(data);
|
| 602 |
+
const targetBrightness = 140;
|
| 603 |
+
let exposureCompensation = targetBrightness / (meanBrightness + 1);
|
| 604 |
+
exposureCompensation = Math.min(Math.max(exposureCompensation, 0.9), 1.3);
|
| 605 |
+
|
| 606 |
+
for (let i = 0; i < data.length; i += 4) {
|
| 607 |
+
data[i] *= exposureCompensation;
|
| 608 |
+
data[i + 1] *= exposureCompensation;
|
| 609 |
+
data[i + 2] *= exposureCompensation;
|
| 610 |
+
}
|
| 611 |
+
|
| 612 |
+
// Clip again
|
| 613 |
+
for (let i = 0; i < data.length; i += 4) {
|
| 614 |
+
data[i] = Math.min(255, Math.max(0, data[i]));
|
| 615 |
+
data[i + 1] = Math.min(255, Math.max(0, data[i + 1]));
|
| 616 |
+
data[i + 2] = Math.min(255, Math.max(0, data[i + 2]));
|
| 617 |
+
}
|
| 618 |
+
|
| 619 |
+
// Step 3: S-curve for professional contrast (strength=0.25)
|
| 620 |
+
this.applySCurve(data, 0.25);
|
| 621 |
+
|
| 622 |
+
// Step 4: Local contrast (clarity) - radius=15, amount=0.25
|
| 623 |
+
const localContrastData = this.enhanceLocalContrast(data, width, height, 15, 0.25);
|
| 624 |
+
|
| 625 |
+
// Step 5: Balanced vibrance (vibrance=0.30)
|
| 626 |
+
this.enhanceColorVibrance(localContrastData, 0.30);
|
| 627 |
+
|
| 628 |
+
// Step 6: Micro-contrast for crispness
|
| 629 |
+
const finalData = this.applyMicroContrast(localContrastData, width, height);
|
| 630 |
+
|
| 631 |
+
// Step 7: Guarantee pure whites
|
| 632 |
+
this.ensureWhites(finalData);
|
| 633 |
+
|
| 634 |
+
// Convert back to Uint8ClampedArray
|
| 635 |
+
const result = new Uint8ClampedArray(finalData.length);
|
| 636 |
+
for (let i = 0; i < finalData.length; i++) {
|
| 637 |
+
result[i] = Math.min(255, Math.max(0, Math.round(finalData[i])));
|
| 638 |
+
}
|
| 639 |
+
|
| 640 |
+
return new ImageData(result, width, height);
|
| 641 |
+
}
|
| 642 |
+
|
| 643 |
+
robustMean(data) {
|
| 644 |
+
const rValues = [];
|
| 645 |
+
const gValues = [];
|
| 646 |
+
const bValues = [];
|
| 647 |
+
|
| 648 |
+
// Collect non-zero values
|
| 649 |
+
for (let i = 0; i < data.length; i += 4) {
|
| 650 |
+
if (data[i] > 10) rValues.push(data[i]);
|
| 651 |
+
if (data[i + 1] > 10) gValues.push(data[i + 1]);
|
| 652 |
+
if (data[i + 2] > 10) bValues.push(data[i + 2]);
|
| 653 |
+
}
|
| 654 |
+
|
| 655 |
+
// Sort arrays
|
| 656 |
+
rValues.sort((a, b) => a - b);
|
| 657 |
+
gValues.sort((a, b) => a - b);
|
| 658 |
+
bValues.sort((a, b) => a - b);
|
| 659 |
+
|
| 660 |
+
// Get mean of percentile 20 to 80
|
| 661 |
+
const getPercentileMean = (arr) => {
|
| 662 |
+
if (arr.length === 0) return 128;
|
| 663 |
+
const start = Math.floor(arr.length * 0.2);
|
| 664 |
+
const end = Math.floor(arr.length * 0.8);
|
| 665 |
+
let sum = 0;
|
| 666 |
+
for (let i = start; i < end; i++) {
|
| 667 |
+
sum += arr[i];
|
| 668 |
+
}
|
| 669 |
+
return sum / (end - start);
|
| 670 |
+
};
|
| 671 |
+
|
| 672 |
+
return {
|
| 673 |
+
avgR: getPercentileMean(rValues),
|
| 674 |
+
avgG: getPercentileMean(gValues),
|
| 675 |
+
avgB: getPercentileMean(bValues)
|
| 676 |
+
};
|
| 677 |
+
}
|
| 678 |
+
|
| 679 |
+
calculateMeanBrightness(data) {
|
| 680 |
+
let sum = 0;
|
| 681 |
+
let count = 0;
|
| 682 |
+
for (let i = 0; i < data.length; i += 4) {
|
| 683 |
+
// RGB to grayscale
|
| 684 |
+
const gray = 0.299 * data[i] + 0.587 * data[i + 1] + 0.114 * data[i + 2];
|
| 685 |
+
sum += gray;
|
| 686 |
+
count++;
|
| 687 |
+
}
|
| 688 |
+
return sum / count;
|
| 689 |
+
}
|
| 690 |
+
|
| 691 |
+
applySCurve(data, strength) {
|
| 692 |
+
// Create S-curve lookup table
|
| 693 |
+
const k = strength * 10;
|
| 694 |
+
const midpoint = 0.5;
|
| 695 |
+
const curve = new Float32Array(256);
|
| 696 |
+
|
| 697 |
+
for (let i = 0; i < 256; i++) {
|
| 698 |
+
const x = i / 255;
|
| 699 |
+
const y = 1 / (1 + Math.exp(-k * (x - midpoint)));
|
| 700 |
+
curve[i] = y;
|
| 701 |
+
}
|
| 702 |
+
|
| 703 |
+
// Normalize curve
|
| 704 |
+
const minCurve = Math.min(...curve);
|
| 705 |
+
const maxCurve = Math.max(...curve);
|
| 706 |
+
for (let i = 0; i < 256; i++) {
|
| 707 |
+
curve[i] = (curve[i] - minCurve) / (maxCurve - minCurve) * 255;
|
| 708 |
+
}
|
| 709 |
+
|
| 710 |
+
// Apply curve to each channel
|
| 711 |
+
for (let i = 0; i < data.length; i += 4) {
|
| 712 |
+
data[i] = curve[Math.round(data[i])];
|
| 713 |
+
data[i + 1] = curve[Math.round(data[i + 1])];
|
| 714 |
+
data[i + 2] = curve[Math.round(data[i + 2])];
|
| 715 |
+
}
|
| 716 |
+
}
|
| 717 |
+
|
| 718 |
+
enhanceLocalContrast(data, width, height, radius, amount) {
|
| 719 |
+
// Create Gaussian kernel
|
| 720 |
+
const kernel = this.createGaussianKernel(radius);
|
| 721 |
+
|
| 722 |
+
// Apply Gaussian blur to get low-frequency component
|
| 723 |
+
const blurred = this.applyGaussianBlur(data, width, height, kernel);
|
| 724 |
+
|
| 725 |
+
// High pass = original - blurred, then add back with amount
|
| 726 |
+
const result = new Float32Array(data.length);
|
| 727 |
+
for (let i = 0; i < data.length; i += 4) {
|
| 728 |
+
result[i] = data[i] + (data[i] - blurred[i]) * amount;
|
| 729 |
+
result[i + 1] = data[i + 1] + (data[i + 1] - blurred[i + 1]) * amount;
|
| 730 |
+
result[i + 2] = data[i + 2] + (data[i + 2] - blurred[i + 2]) * amount;
|
| 731 |
+
result[i + 3] = data[i + 3];
|
| 732 |
+
}
|
| 733 |
+
|
| 734 |
+
return result;
|
| 735 |
+
}
|
| 736 |
+
|
| 737 |
+
createGaussianKernel(radius) {
|
| 738 |
+
const size = radius * 2 + 1;
|
| 739 |
+
const kernel = new Float32Array(size * size);
|
| 740 |
+
const sigma = radius / 3;
|
| 741 |
+
const sigma2 = sigma * sigma;
|
| 742 |
+
let sum = 0;
|
| 743 |
+
|
| 744 |
+
for (let y = 0; y < size; y++) {
|
| 745 |
+
for (let x = 0; x < size; x++) {
|
| 746 |
+
const dx = x - radius;
|
| 747 |
+
const dy = y - radius;
|
| 748 |
+
const value = Math.exp(-(dx * dx + dy * dy) / (2 * sigma2));
|
| 749 |
+
kernel[y * size + x] = value;
|
| 750 |
+
sum += value;
|
| 751 |
+
}
|
| 752 |
+
}
|
| 753 |
+
|
| 754 |
+
// Normalize
|
| 755 |
+
for (let i = 0; i < kernel.length; i++) {
|
| 756 |
+
kernel[i] /= sum;
|
| 757 |
+
}
|
| 758 |
+
|
| 759 |
+
return { data: kernel, size: size, radius: radius };
|
| 760 |
+
}
|
| 761 |
+
|
| 762 |
+
applyGaussianBlur(data, width, height, kernel) {
|
| 763 |
+
const result = new Float32Array(data.length);
|
| 764 |
+
const { data: kernelData, size, radius } = kernel;
|
| 765 |
+
|
| 766 |
+
for (let y = 0; y < height; y++) {
|
| 767 |
+
for (let x = 0; x < width; x++) {
|
| 768 |
+
let r = 0, g = 0, b = 0;
|
| 769 |
+
|
| 770 |
+
for (let ky = 0; ky < size; ky++) {
|
| 771 |
+
for (let kx = 0; kx < size; kx++) {
|
| 772 |
+
const px = Math.min(width - 1, Math.max(0, x + kx - radius));
|
| 773 |
+
const py = Math.min(height - 1, Math.max(0, y + ky - radius));
|
| 774 |
+
const idx = (py * width + px) * 4;
|
| 775 |
+
const weight = kernelData[ky * size + kx];
|
| 776 |
+
|
| 777 |
+
r += data[idx] * weight;
|
| 778 |
+
g += data[idx + 1] * weight;
|
| 779 |
+
b += data[idx + 2] * weight;
|
| 780 |
+
}
|
| 781 |
+
}
|
| 782 |
+
|
| 783 |
+
const idx = (y * width + x) * 4;
|
| 784 |
+
result[idx] = r;
|
| 785 |
+
result[idx + 1] = g;
|
| 786 |
+
result[idx + 2] = b;
|
| 787 |
+
result[idx + 3] = data[idx + 3];
|
| 788 |
+
}
|
| 789 |
+
}
|
| 790 |
+
|
| 791 |
+
return result;
|
| 792 |
+
}
|
| 793 |
+
|
| 794 |
+
enhanceColorVibrance(data, vibrance) {
|
| 795 |
+
for (let i = 0; i < data.length; i += 4) {
|
| 796 |
+
const r = data[i];
|
| 797 |
+
const g = data[i + 1];
|
| 798 |
+
const b = data[i + 2];
|
| 799 |
+
|
| 800 |
+
// Convert to HSV-like calculations
|
| 801 |
+
const max = Math.max(r, g, b);
|
| 802 |
+
const min = Math.min(r, g, b);
|
| 803 |
+
const saturation = max > 0 ? (max - min) / max : 0;
|
| 804 |
+
|
| 805 |
+
// Less saturated colors get more boost
|
| 806 |
+
const saturationBoost = 1.0 + vibrance * (1.0 - saturation);
|
| 807 |
+
|
| 808 |
+
// Check if it's a skin tone (protect from over-saturation)
|
| 809 |
+
const hue = this.calculateHue(r, g, b);
|
| 810 |
+
const isSkintone = (hue < 25 || hue > 330) && saturation > 0.1;
|
| 811 |
+
|
| 812 |
+
const boost = isSkintone ? 1.0 + vibrance * 0.3 : saturationBoost;
|
| 813 |
+
|
| 814 |
+
// Apply vibrance
|
| 815 |
+
const avg = (r + g + b) / 3;
|
| 816 |
+
data[i] = avg + (r - avg) * boost;
|
| 817 |
+
data[i + 1] = avg + (g - avg) * boost;
|
| 818 |
+
data[i + 2] = avg + (b - avg) * boost;
|
| 819 |
+
}
|
| 820 |
+
}
|
| 821 |
+
|
| 822 |
+
calculateHue(r, g, b) {
|
| 823 |
+
r /= 255;
|
| 824 |
+
g /= 255;
|
| 825 |
+
b /= 255;
|
| 826 |
+
|
| 827 |
+
const max = Math.max(r, g, b);
|
| 828 |
+
const min = Math.min(r, g, b);
|
| 829 |
+
const delta = max - min;
|
| 830 |
+
|
| 831 |
+
if (delta === 0) return 0;
|
| 832 |
+
|
| 833 |
+
let hue;
|
| 834 |
+
if (max === r) {
|
| 835 |
+
hue = ((g - b) / delta) % 6;
|
| 836 |
+
} else if (max === g) {
|
| 837 |
+
hue = (b - r) / delta + 2;
|
| 838 |
+
} else {
|
| 839 |
+
hue = (r - g) / delta + 4;
|
| 840 |
+
}
|
| 841 |
+
|
| 842 |
+
hue = Math.round(hue * 60);
|
| 843 |
+
if (hue < 0) hue += 360;
|
| 844 |
+
|
| 845 |
+
return hue;
|
| 846 |
+
}
|
| 847 |
+
|
| 848 |
+
applyMicroContrast(data, width, height) {
|
| 849 |
+
// Small radius Gaussian blur
|
| 850 |
+
const kernel = this.createGaussianKernel(1);
|
| 851 |
+
const blurred = this.applyGaussianBlur(data, width, height, kernel);
|
| 852 |
+
|
| 853 |
+
// Unsharp mask: original * 1.3 - blurred * 0.3
|
| 854 |
+
const result = new Float32Array(data.length);
|
| 855 |
+
for (let i = 0; i < data.length; i += 4) {
|
| 856 |
+
result[i] = data[i] * 1.3 - blurred[i] * 0.3;
|
| 857 |
+
result[i + 1] = data[i + 1] * 1.3 - blurred[i + 1] * 0.3;
|
| 858 |
+
result[i + 2] = data[i + 2] * 1.3 - blurred[i + 2] * 0.3;
|
| 859 |
+
result[i + 3] = data[i + 3];
|
| 860 |
+
}
|
| 861 |
+
|
| 862 |
+
return result;
|
| 863 |
+
}
|
| 864 |
+
|
| 865 |
+
ensureWhites(data) {
|
| 866 |
+
for (let i = 0; i < data.length; i += 4) {
|
| 867 |
+
const r = data[i];
|
| 868 |
+
const g = data[i + 1];
|
| 869 |
+
const b = data[i + 2];
|
| 870 |
+
|
| 871 |
+
// Calculate brightness and saturation
|
| 872 |
+
const brightness = 0.299 * r + 0.587 * g + 0.114 * b;
|
| 873 |
+
const max = Math.max(r, g, b);
|
| 874 |
+
const min = Math.min(r, g, b);
|
| 875 |
+
const saturation = max > 0 ? (max - min) / max : 0;
|
| 876 |
+
|
| 877 |
+
// If very bright and low saturation, make it pure white
|
| 878 |
+
if (brightness > 240 && saturation < 0.06) {
|
| 879 |
+
data[i] = 255;
|
| 880 |
+
data[i + 1] = 255;
|
| 881 |
+
data[i + 2] = 255;
|
| 882 |
+
}
|
| 883 |
+
}
|
| 884 |
+
}
|
| 885 |
+
}
|
| 886 |
+
|
| 887 |
+
// Initialize
|
| 888 |
+
const processor = new ImageProcessor();
|
| 889 |
+
|
| 890 |
+
function downloadImage() {
|
| 891 |
+
const canvas = document.getElementById('correctedCanvas');
|
| 892 |
+
const link = document.createElement('a');
|
| 893 |
+
link.download = 'corrected_image.png';
|
| 894 |
+
link.href = canvas.toDataURL('image/png');
|
| 895 |
+
link.click();
|
| 896 |
+
}
|
| 897 |
+
|
| 898 |
+
function downloadModalImage() {
|
| 899 |
+
const canvas = document.getElementById('modalCorrected');
|
| 900 |
+
const link = document.createElement('a');
|
| 901 |
+
link.download = `corrected_${processor.currentModalIndex + 1}.png`;
|
| 902 |
+
link.href = canvas.toDataURL('image/png');
|
| 903 |
+
link.click();
|
| 904 |
+
}
|
| 905 |
+
|
| 906 |
+
async function downloadAll() {
|
| 907 |
+
for (let i = 0; i < processor.processedImages.length; i++) {
|
| 908 |
+
const link = document.createElement('a');
|
| 909 |
+
link.download = `corrected_${processor.processedImages[i].name}`;
|
| 910 |
+
link.href = processor.processedImages[i].corrected.toDataURL('image/png');
|
| 911 |
+
link.click();
|
| 912 |
+
await new Promise(resolve => setTimeout(resolve, 100));
|
| 913 |
+
}
|
| 914 |
+
}
|
| 915 |
+
|
| 916 |
+
function resetApp() {
|
| 917 |
+
document.getElementById('results').style.display = 'none';
|
| 918 |
+
document.getElementById('uploadArea').style.display = 'block';
|
| 919 |
+
document.getElementById('fileInput').value = '';
|
| 920 |
+
processor.processedImages = [];
|
| 921 |
+
}
|
| 922 |
+
|
| 923 |
+
function closeModal() {
|
| 924 |
+
document.getElementById('imageModal').style.display = 'none';
|
| 925 |
+
}
|
| 926 |
+
|
| 927 |
+
// Close modal on background click
|
| 928 |
+
document.getElementById('imageModal').addEventListener('click', (e) => {
|
| 929 |
+
if (e.target.id === 'imageModal') {
|
| 930 |
+
closeModal();
|
| 931 |
+
}
|
| 932 |
+
});
|
| 933 |
+
</script>
|
| 934 |
+
</body>
|
| 935 |
+
</html>
|