Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,12 +2,9 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
import spaces
|
| 4 |
from diffusers import FluxInpaintPipeline
|
| 5 |
-
from PIL import Image
|
| 6 |
-
import io
|
| 7 |
-
import numpy as np
|
| 8 |
|
| 9 |
-
|
| 10 |
-
# ImageFile.LOAD_TRUNCATED_IMAGES = True
|
| 11 |
|
| 12 |
# Initialize the pipeline
|
| 13 |
pipe = FluxInpaintPipeline.from_pretrained(
|
|
@@ -20,153 +17,64 @@ pipe.load_lora_weights(
|
|
| 20 |
weight_name="visual-identity-design.safetensors"
|
| 21 |
)
|
| 22 |
|
| 23 |
-
def safe_open_image(image):
|
| 24 |
-
"""Safely open and validate image"""
|
| 25 |
-
try:
|
| 26 |
-
if isinstance(image, np.ndarray):
|
| 27 |
-
# Convert numpy array to PIL Image
|
| 28 |
-
image = Image.fromarray(image)
|
| 29 |
-
elif isinstance(image, bytes):
|
| 30 |
-
# Handle bytes input
|
| 31 |
-
image = Image.open(io.BytesIO(image))
|
| 32 |
-
|
| 33 |
-
# Ensure the image is in RGB mode
|
| 34 |
-
if image.mode != 'RGB':
|
| 35 |
-
image = image.convert('RGB')
|
| 36 |
-
|
| 37 |
-
return image
|
| 38 |
-
except Exception as e:
|
| 39 |
-
raise ValueError(f"Error processing input image: {str(e)}")
|
| 40 |
-
|
| 41 |
def square_center_crop(img, target_size=768):
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
top = max(0, (height - crop_size) // 2)
|
| 56 |
-
right = min(width, left + crop_size)
|
| 57 |
-
bottom = min(height, top + crop_size)
|
| 58 |
-
|
| 59 |
-
img_cropped = img.crop((left, top, right, bottom))
|
| 60 |
-
|
| 61 |
-
# Use high-quality resizing
|
| 62 |
-
return img_cropped.resize(
|
| 63 |
-
(target_size, target_size),
|
| 64 |
-
Image.Resampling.LANCZOS,
|
| 65 |
-
reducing_gap=3.0
|
| 66 |
-
)
|
| 67 |
-
except Exception as e:
|
| 68 |
-
raise ValueError(f"Error during image cropping: {str(e)}")
|
| 69 |
|
| 70 |
def duplicate_horizontally(img):
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
img = img.convert('RGB')
|
| 83 |
-
|
| 84 |
-
new_image.paste(img, (0, 0))
|
| 85 |
-
new_image.paste(img, (width, 0))
|
| 86 |
-
|
| 87 |
-
return new_image
|
| 88 |
-
except Exception as e:
|
| 89 |
-
raise ValueError(f"Error during image duplication: {str(e)}")
|
| 90 |
-
|
| 91 |
-
def safe_crop_output(img):
|
| 92 |
-
"""Safely crop the output image"""
|
| 93 |
-
try:
|
| 94 |
-
width, height = img.size
|
| 95 |
-
half_width = width // 2
|
| 96 |
-
return img.crop((half_width, 0, width, height))
|
| 97 |
-
except Exception as e:
|
| 98 |
-
raise ValueError(f"Error cropping output image: {str(e)}")
|
| 99 |
-
|
| 100 |
-
# Load the mask image with error handling
|
| 101 |
-
try:
|
| 102 |
-
mask = Image.open("mask_square.png")
|
| 103 |
-
if mask.mode != 'RGB':
|
| 104 |
-
mask = mask.convert('RGB')
|
| 105 |
-
except Exception as e:
|
| 106 |
-
raise RuntimeError(f"Error loading mask image: {str(e)}")
|
| 107 |
|
| 108 |
@spaces.GPU
|
| 109 |
def generate(image, prompt_user, progress=gr.Progress(track_tqdm=True)):
|
| 110 |
-
"
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
except Exception as e:
|
| 135 |
-
error_message = f"Error during duplication: {str(e)}"
|
| 136 |
-
print(error_message) # For logging
|
| 137 |
-
raise gr.Error(error_message)
|
| 138 |
-
yield debug_resize, debug_duplicate, None, None
|
| 139 |
-
print("just before getting into pipe")
|
| 140 |
-
# Generate output
|
| 141 |
-
out = pipe(
|
| 142 |
-
prompt=prompt,
|
| 143 |
-
image=logo_dupli,
|
| 144 |
-
mask_image=mask,
|
| 145 |
-
guidance_scale=6,
|
| 146 |
-
height=768,
|
| 147 |
-
width=1536,
|
| 148 |
-
num_inference_steps=28,
|
| 149 |
-
max_sequence_length=256,
|
| 150 |
-
strength=1
|
| 151 |
-
).images[0]
|
| 152 |
-
|
| 153 |
-
# First yield for progress
|
| 154 |
-
yield debug_resize, debug_duplicate, out, None
|
| 155 |
-
|
| 156 |
-
# Process and return final output
|
| 157 |
-
image_2 = safe_crop_output(out)
|
| 158 |
-
yield debug_resize, debug_duplicate, out, image_2
|
| 159 |
-
|
| 160 |
-
except Exception as e:
|
| 161 |
-
error_message = f"Error during generation: {str(e)}"
|
| 162 |
-
print(error_message) # For logging
|
| 163 |
-
raise gr.Error(error_message)
|
| 164 |
-
|
| 165 |
-
# Create the Gradio interface
|
| 166 |
with gr.Blocks() as demo:
|
| 167 |
gr.Markdown("# Logo in Context")
|
| 168 |
gr.Markdown("### In-Context LoRA + Image-to-Image, apply your logo to anything")
|
| 169 |
-
|
| 170 |
with gr.Row():
|
| 171 |
with gr.Column():
|
| 172 |
input_image = gr.Image(
|
|
@@ -180,37 +88,27 @@ with gr.Blocks() as demo:
|
|
| 180 |
lines=2
|
| 181 |
)
|
| 182 |
generate_btn = gr.Button("Generate Application", variant="primary")
|
| 183 |
-
|
| 184 |
with gr.Column():
|
| 185 |
-
output_image = gr.Image(
|
| 186 |
-
|
| 187 |
-
type="pil"
|
| 188 |
-
)
|
| 189 |
-
output_side = gr.Image(
|
| 190 |
-
label="Side by side",
|
| 191 |
-
type="pil"
|
| 192 |
-
)
|
| 193 |
-
debug_resize = gr.Image()
|
| 194 |
-
debug_duplicate = gr.Image()
|
| 195 |
-
|
| 196 |
with gr.Row():
|
| 197 |
gr.Markdown("""
|
| 198 |
### Instructions:
|
| 199 |
1. Upload a logo image (preferably square)
|
| 200 |
2. Describe where you'd like to see the logo applied
|
| 201 |
3. Click 'Generate Application' and wait for the result
|
| 202 |
-
|
| 203 |
Note: The generation process might take a few moments.
|
| 204 |
""")
|
| 205 |
-
|
| 206 |
-
# Set up the click event
|
| 207 |
generate_btn.click(
|
| 208 |
fn=generate,
|
| 209 |
inputs=[input_image, prompt_input],
|
| 210 |
-
outputs=[
|
| 211 |
-
api_name="generate"
|
| 212 |
)
|
| 213 |
|
| 214 |
# Launch the interface
|
| 215 |
-
if
|
| 216 |
demo.launch()
|
|
|
|
| 2 |
import torch
|
| 3 |
import spaces
|
| 4 |
from diffusers import FluxInpaintPipeline
|
| 5 |
+
from PIL import Image, ImageFile
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
|
|
|
| 8 |
|
| 9 |
# Initialize the pipeline
|
| 10 |
pipe = FluxInpaintPipeline.from_pretrained(
|
|
|
|
| 17 |
weight_name="visual-identity-design.safetensors"
|
| 18 |
)
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
def square_center_crop(img, target_size=768):
|
| 21 |
+
if img.mode in ('RGBA', 'P'):
|
| 22 |
+
img = img.convert('RGB')
|
| 23 |
+
|
| 24 |
+
width, height = img.size
|
| 25 |
+
crop_size = min(width, height)
|
| 26 |
+
|
| 27 |
+
left = (width - crop_size) // 2
|
| 28 |
+
top = (height - crop_size) // 2
|
| 29 |
+
right = left + crop_size
|
| 30 |
+
bottom = top + crop_size
|
| 31 |
+
|
| 32 |
+
img_cropped = img.crop((left, top, right, bottom))
|
| 33 |
+
return img_cropped.resize((target_size, target_size), Image.Resampling.LANCZOS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
def duplicate_horizontally(img):
|
| 36 |
+
width, height = img.size
|
| 37 |
+
if width != height:
|
| 38 |
+
raise ValueError(f"Input image must be square, got {width}x{height}")
|
| 39 |
+
|
| 40 |
+
new_image = Image.new('RGB', (width * 2, height))
|
| 41 |
+
new_image.paste(img, (0, 0))
|
| 42 |
+
new_image.paste(img, (width, 0))
|
| 43 |
+
return new_image
|
| 44 |
+
|
| 45 |
+
# Load the mask image
|
| 46 |
+
mask = Image.open("mask_square.png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
@spaces.GPU
|
| 49 |
def generate(image, prompt_user, progress=gr.Progress(track_tqdm=True)):
|
| 50 |
+
prompt_structure = "The two-panel image showcases the logo of a brand, [LEFT] the left panel is showing the logo [RIGHT] the right panel has this logo applied to "
|
| 51 |
+
prompt = prompt_structure + prompt_user
|
| 52 |
+
|
| 53 |
+
cropped_image = square_center_crop(image)
|
| 54 |
+
logo_dupli = duplicate_horizontally(cropped_image)
|
| 55 |
+
|
| 56 |
+
out = pipe(
|
| 57 |
+
prompt=prompt,
|
| 58 |
+
image=logo_dupli,
|
| 59 |
+
mask_image=mask,
|
| 60 |
+
guidance_scale=6,
|
| 61 |
+
height=768,
|
| 62 |
+
width=1536,
|
| 63 |
+
num_inference_steps=28,
|
| 64 |
+
max_sequence_length=256,
|
| 65 |
+
strength=1
|
| 66 |
+
).images[0]
|
| 67 |
+
|
| 68 |
+
yield None, out
|
| 69 |
+
width, height = out.size
|
| 70 |
+
half_width = width // 2
|
| 71 |
+
image_2 = out.crop((half_width, 0, width, height))
|
| 72 |
+
yield image_2, out
|
| 73 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
with gr.Blocks() as demo:
|
| 75 |
gr.Markdown("# Logo in Context")
|
| 76 |
gr.Markdown("### In-Context LoRA + Image-to-Image, apply your logo to anything")
|
| 77 |
+
|
| 78 |
with gr.Row():
|
| 79 |
with gr.Column():
|
| 80 |
input_image = gr.Image(
|
|
|
|
| 88 |
lines=2
|
| 89 |
)
|
| 90 |
generate_btn = gr.Button("Generate Application", variant="primary")
|
| 91 |
+
|
| 92 |
with gr.Column():
|
| 93 |
+
output_image = gr.Image(label="Generated Application")
|
| 94 |
+
output_side = gr.Image(label="Side by side")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
with gr.Row():
|
| 96 |
gr.Markdown("""
|
| 97 |
### Instructions:
|
| 98 |
1. Upload a logo image (preferably square)
|
| 99 |
2. Describe where you'd like to see the logo applied
|
| 100 |
3. Click 'Generate Application' and wait for the result
|
| 101 |
+
|
| 102 |
Note: The generation process might take a few moments.
|
| 103 |
""")
|
| 104 |
+
|
| 105 |
+
# Set up the click event
|
| 106 |
generate_btn.click(
|
| 107 |
fn=generate,
|
| 108 |
inputs=[input_image, prompt_input],
|
| 109 |
+
outputs=[output_image, output_side]
|
|
|
|
| 110 |
)
|
| 111 |
|
| 112 |
# Launch the interface
|
| 113 |
+
if name == "main":
|
| 114 |
demo.launch()
|