Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| from diffusers import DiffusionPipeline | |
| import spaces | |
| import torch | |
| from concurrent.futures import ProcessPoolExecutor | |
| from huggingface_hub import hf_hub_download | |
| dev_model = "black-forest-labs/FLUX.1-dev" | |
| schnell_model = "black-forest-labs/FLUX.1-schnell" | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| repo_name = "ByteDance/Hyper-SD" | |
| ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors" | |
| hyper_lora = hf_hub_download(repo_name, ckpt_name) | |
| repo_name = "alimama-creative/FLUX.1-Turbo-Alpha" | |
| ckpt_name = "diffusion_pytorch_model.safetensors" | |
| turbo_lora = hf_hub_download(repo_name, ckpt_name) | |
| pipe_dev = DiffusionPipeline.from_pretrained(dev_model, torch_dtype=torch.bfloat16) | |
| pipe_schnell = DiffusionPipeline.from_pretrained( | |
| schnell_model, | |
| text_encoder=pipe_dev.text_encoder, | |
| text_encoder_2=pipe_dev.text_encoder_2, | |
| tokenizer=pipe_dev.tokenizer, | |
| tokenizer_2=pipe_dev.tokenizer_2, | |
| torch_dtype=torch.bfloat16 | |
| ) | |
| def run_dev_hyper(prompt): | |
| print("dev_hyper") | |
| pipe_dev.to("cuda") | |
| print(hyper_lora) | |
| pipe_dev.load_lora_weights(hyper_lora) | |
| print("Loaded hyper lora!") | |
| image = pipe_dev(prompt, num_inference_steps=8, joint_attention_kwargs={"scale": 0.125}).images[0] | |
| print("Ran!") | |
| pipe_dev.unload_lora_weights() | |
| return image | |
| def run_dev_turbo(prompt): | |
| print("dev_turbo") | |
| pipe_dev.to("cuda") | |
| print(turbo_lora) | |
| pipe_dev.load_lora_weights(turbo_lora) | |
| print("Loaded turbo lora!") | |
| image = pipe_dev(prompt, num_inference_steps=8).images[0] | |
| print("Ran!") | |
| pipe_dev.unload_lora_weights() | |
| return image | |
| def run_schnell(prompt): | |
| print("schnell") | |
| pipe_schnell.to("cuda") | |
| print("schnell on gpu") | |
| image = pipe_schnell(prompt, num_inference_steps=4).images[0] | |
| print("Ran!") | |
| return image | |
| def run_parallel_models(prompt): | |
| print(prompt) | |
| with ProcessPoolExecutor(max_workers=3) as executor: | |
| future_dev_hyper = executor.submit(run_dev_hyper, prompt) | |
| future_dev_turbo = executor.submit(run_dev_turbo, prompt) | |
| future_schnell = executor.submit(run_schnell, prompt) | |
| res_dev_hyper = future_dev_hyper.result() | |
| res_dev_turbo = future_dev_turbo.result() | |
| res_schnell = future_schnell.result() | |
| return res_dev_hyper, res_dev_turbo, res_schnell | |
| run_parallel_models.zerogpu = True | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Low Step Flux Comparison") | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Prompt") | |
| submit = gr.Button() | |
| with gr.Row(): | |
| schnell = gr.Image(label="FLUX Schnell (4 steps)") | |
| hyper = gr.Image(label="FLUX.1[dev] HyperFLUX (8 steps)") | |
| turbo = gr.Image(label="FLUX.1[dev]-Turbo-Alpha (8 steps)") | |
| submit.click( | |
| fn=run_parallel_models, | |
| inputs=[prompt], | |
| outputs=[schnell, hyper, turbo] | |
| ) | |
| demo.launch() |