Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| from concurrent.futures import ProcessPoolExecutor | |
| from huggingface_hub import hf_hub_download | |
| dev_model = "black-forest-labs/FLUX.1-dev" | |
| schnell_model = "black-forest-labs/FLUX.1-schnell" | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| repo_name = "ByteDance/Hyper-SD" | |
| ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors" | |
| hyper_lora = hf_hub_download(repo_name, ckpt_name) | |
| repo_name = "alimama-creative/FLUX.1-Turbo-Alpha" | |
| ckpt_name = "diffusion_pytorch_model.safetensors" | |
| turbo_lora = hf_hub_download(repo_name, ckpt_name) | |
| pipe_dev = DiffusionPipeline.from_pretrained(dev_model, torch_dtype=torch.bfloat16).to("cuda") | |
| pipe_schnell = DiffusionPipeline.from_pretrained( | |
| schnell_model, | |
| text_encoder=pipe_dev.text_encoder, | |
| text_encoder_2=pipe_dev.text_encoder_2, | |
| tokenizer=pipe_dev.tokenizer, | |
| tokenizer_2=pipe_dev.tokenizer_2, | |
| torch_dtype=torch.bfloat16 | |
| ) | |
| def run_parallel_models(prompt, progress=gr.Progress(track_tqdm=True)): | |
| pipe_dev.load_lora_weights(hyper_lora) | |
| image = pipe_dev(prompt, num_inference_steps=8, joint_attention_kwargs={"scale": 0.125}).images[0] | |
| pipe_dev.unload_lora_weights() | |
| yield image, gr.update(), gr.update() | |
| pipe_dev.load_lora_weights(turbo_lora) | |
| image = pipe_dev(prompt, num_inference_steps=8).images[0] | |
| yield gr.update(), image, gr.update() | |
| pipe_dev.unload_lora_weights() | |
| pipe_dev.to("cpu") | |
| pipe_schnell.to("cuda") | |
| image = pipe_schnell(prompt, num_inference_steps=4).images[0] | |
| yield gr.update(), gr.update(), image | |
| #run_parallel_models.zerogpu = True | |
| css = ''' | |
| #gen_btn{height: 100%} | |
| #gen_column{align-self: stretch} | |
| ''' | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown("# Low Step Flux Comparison") | |
| gr.Markdown("Compare the quality (not the speed) of FLUX Schnell (4 steps), FLUX.1[dev] HyperFLUX (8 steps), FLUX.1[dev]-Turbo-Alpha (8 steps). It runs a bit slow as it's inferencing the three models.") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| prompt = gr.Textbox(label="Prompt") | |
| with gr.Column(scale=1, min_width=120, elem_id="gen_column"): | |
| submit = gr.Button("Run", elem_id="gen_btn") | |
| with gr.Row(): | |
| hyper = gr.Image(label="FLUX.1[dev] HyperFLUX (8 steps)") | |
| turbo = gr.Image(label="FLUX.1[dev]-Turbo-Alpha (8 steps)") | |
| schnell = gr.Image(label="FLUX Schnell (4 steps)") | |
| gr.Examples( | |
| examples=[ | |
| ["the spirit of a Tamagotchi wandering in the city of Vienna"], | |
| ["a photo of a lavender cat"], | |
| ["a tiny astronaut hatching from an egg on the moon"], | |
| ["a delicious ceviche cheesecake slice"], | |
| ["an insect robot preparing a delicious meal"], | |
| ["a Charmander fine dining with a view to la Sagrada Família"]], | |
| fn=run_parallel_models, | |
| inputs=[prompt], | |
| outputs=[hyper, turbo, schnell], | |
| cache_examples="lazy" | |
| ) | |
| gr.on( | |
| triggers=[submit.click, prompt.submit], | |
| fn=run_parallel_models, | |
| inputs=[prompt], | |
| outputs=[hyper, turbo, schnell] | |
| ) | |
| demo.launch() |