Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,6 +10,14 @@ schnell_model = "black-forest-labs/FLUX.1-schnell"
|
|
| 10 |
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
pipe_dev = DiffusionPipeline.from_pretrained(dev_model, torch_dtype=torch.bfloat16)
|
| 14 |
pipe_schnell = DiffusionPipeline.from_pretrained(
|
| 15 |
schnell_model,
|
|
@@ -19,13 +27,12 @@ pipe_schnell = DiffusionPipeline.from_pretrained(
|
|
| 19 |
tokenizer_2=pipe_dev.tokenizer_2,
|
| 20 |
torch_dtype=torch.bfloat16
|
| 21 |
)
|
|
|
|
| 22 |
@spaces.GPU
|
| 23 |
def run_dev_hyper(prompt):
|
| 24 |
print("dev_hyper")
|
| 25 |
pipe_dev.to("cuda")
|
| 26 |
-
|
| 27 |
-
ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors"
|
| 28 |
-
pipe_dev.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
|
| 29 |
image = pipe_dev(prompt, num_inference_steps=8, joint_attention_kwargs={"scale": 0.125}).images[0]
|
| 30 |
pipe_dev.unload_lora_weights()
|
| 31 |
return image
|
|
@@ -34,9 +41,7 @@ def run_dev_hyper(prompt):
|
|
| 34 |
def run_dev_turbo(prompt):
|
| 35 |
print("dev_turbo")
|
| 36 |
pipe_dev.to("cuda")
|
| 37 |
-
|
| 38 |
-
ckpt_name = "diffusion_pytorch_model.safetensors"
|
| 39 |
-
pipe_dev.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
|
| 40 |
image = pipe_dev(prompt, num_inference_steps=8).images[0]
|
| 41 |
pipe_dev.unload_lora_weights()
|
| 42 |
return image
|
|
|
|
| 10 |
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
|
| 13 |
+
repo_name = "ByteDance/Hyper-SD"
|
| 14 |
+
ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors"
|
| 15 |
+
hyper_lora = hf_hub_download(repo_name, ckpt_name)
|
| 16 |
+
|
| 17 |
+
repo_name = "alimama-creative/FLUX.1-Turbo-Alpha"
|
| 18 |
+
ckpt_name = "diffusion_pytorch_model.safetensors"
|
| 19 |
+
turbo_lora = hf_hub_download(repo_name, ckpt_name)
|
| 20 |
+
|
| 21 |
pipe_dev = DiffusionPipeline.from_pretrained(dev_model, torch_dtype=torch.bfloat16)
|
| 22 |
pipe_schnell = DiffusionPipeline.from_pretrained(
|
| 23 |
schnell_model,
|
|
|
|
| 27 |
tokenizer_2=pipe_dev.tokenizer_2,
|
| 28 |
torch_dtype=torch.bfloat16
|
| 29 |
)
|
| 30 |
+
|
| 31 |
@spaces.GPU
|
| 32 |
def run_dev_hyper(prompt):
|
| 33 |
print("dev_hyper")
|
| 34 |
pipe_dev.to("cuda")
|
| 35 |
+
pipe_dev.load_lora_weights(hyper_lora)
|
|
|
|
|
|
|
| 36 |
image = pipe_dev(prompt, num_inference_steps=8, joint_attention_kwargs={"scale": 0.125}).images[0]
|
| 37 |
pipe_dev.unload_lora_weights()
|
| 38 |
return image
|
|
|
|
| 41 |
def run_dev_turbo(prompt):
|
| 42 |
print("dev_turbo")
|
| 43 |
pipe_dev.to("cuda")
|
| 44 |
+
pipe_dev.load_lora_weights(turbo_lora)
|
|
|
|
|
|
|
| 45 |
image = pipe_dev(prompt, num_inference_steps=8).images[0]
|
| 46 |
pipe_dev.unload_lora_weights()
|
| 47 |
return image
|