Nick White
commited on
Commit
·
c689941
1
Parent(s):
f161a5d
ADD initial config and app files
Browse files- README.md +5 -5
- app.py +317 -0
- efficient_sam_s_cpu.jit +3 -0
- efficient_sam_s_gpu.jit +3 -0
- requirements.txt +4 -0
- utils/__init__.py +0 -0
- utils/efficient_sam.py +61 -0
- utils/video.py +59 -0
README.md
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 4.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: gpl-3.0
|
|
|
|
| 1 |
---
|
| 2 |
+
title: YOLO-World + EfficientSAM
|
| 3 |
+
emoji: 🔥
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.19.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: gpl-3.0
|
app.py
ADDED
|
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import cv2
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import numpy as np
|
| 7 |
+
import supervision as sv
|
| 8 |
+
import torch
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
from inference.models import YOLOWorld
|
| 11 |
+
|
| 12 |
+
from utils.efficient_sam import load, inference_with_boxes
|
| 13 |
+
from utils.video import (
|
| 14 |
+
generate_file_name,
|
| 15 |
+
calculate_end_frame_index,
|
| 16 |
+
create_directory,
|
| 17 |
+
remove_files_older_than
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
MARKDOWN = """
|
| 21 |
+
# YOLO-World + EfficientSAM Demo at SafetyCulture🔥
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
RESULTS = "results"
|
| 25 |
+
|
| 26 |
+
IMAGE_EXAMPLES = [
|
| 27 |
+
['https://media.roboflow.com/dog.jpeg', 'dog, eye, nose, tongue, car', 0.005, 0.1, True, False, False],
|
| 28 |
+
['https://media.roboflow.com/albert-4x.png', 'hand, hair', 0.005, 0.1, True, False, False],
|
| 29 |
+
]
|
| 30 |
+
VIDEO_EXAMPLES = [
|
| 31 |
+
['https://media.roboflow.com/supervision/video-examples/croissant-1280x720.mp4', 'croissant', 0.01, 0.2, False, False, False],
|
| 32 |
+
['https://media.roboflow.com/supervision/video-examples/suitcases-1280x720.mp4', 'suitcase', 0.1, 0.2, False, False, False],
|
| 33 |
+
['https://media.roboflow.com/supervision/video-examples/tokyo-walk-1280x720.mp4', 'woman walking', 0.1, 0.2, False, False, False],
|
| 34 |
+
['https://media.roboflow.com/supervision/video-examples/wooly-mammoth-1280x720.mp4', 'mammoth', 0.01, 0.2, False, False, False],
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 38 |
+
EFFICIENT_SAM_MODEL = load(device=DEVICE)
|
| 39 |
+
YOLO_WORLD_MODEL = YOLOWorld(model_id="yolo_world/l")
|
| 40 |
+
|
| 41 |
+
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
|
| 42 |
+
MASK_ANNOTATOR = sv.MaskAnnotator()
|
| 43 |
+
LABEL_ANNOTATOR = sv.LabelAnnotator()
|
| 44 |
+
|
| 45 |
+
# creating video results directory
|
| 46 |
+
create_directory(directory_path=RESULTS)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def process_categories(categories: str) -> List[str]:
|
| 50 |
+
return [category.strip() for category in categories.split(',')]
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def annotate_image(
|
| 54 |
+
input_image: np.ndarray,
|
| 55 |
+
detections: sv.Detections,
|
| 56 |
+
categories: List[str],
|
| 57 |
+
with_confidence: bool = False,
|
| 58 |
+
) -> np.ndarray:
|
| 59 |
+
labels = [
|
| 60 |
+
(
|
| 61 |
+
f"{categories[class_id]}: {confidence:.3f}"
|
| 62 |
+
if with_confidence
|
| 63 |
+
else f"{categories[class_id]}"
|
| 64 |
+
)
|
| 65 |
+
for class_id, confidence in
|
| 66 |
+
zip(detections.class_id, detections.confidence)
|
| 67 |
+
]
|
| 68 |
+
output_image = MASK_ANNOTATOR.annotate(input_image, detections)
|
| 69 |
+
output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
|
| 70 |
+
output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
|
| 71 |
+
return output_image
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def process_image(
|
| 75 |
+
input_image: np.ndarray,
|
| 76 |
+
categories: str,
|
| 77 |
+
confidence_threshold: float = 0.3,
|
| 78 |
+
iou_threshold: float = 0.5,
|
| 79 |
+
with_segmentation: bool = True,
|
| 80 |
+
with_confidence: bool = False,
|
| 81 |
+
with_class_agnostic_nms: bool = False,
|
| 82 |
+
) -> np.ndarray:
|
| 83 |
+
# cleanup of old video files
|
| 84 |
+
remove_files_older_than(RESULTS, 30)
|
| 85 |
+
|
| 86 |
+
categories = process_categories(categories)
|
| 87 |
+
YOLO_WORLD_MODEL.set_classes(categories)
|
| 88 |
+
results = YOLO_WORLD_MODEL.infer(input_image, confidence=confidence_threshold)
|
| 89 |
+
detections = sv.Detections.from_inference(results)
|
| 90 |
+
detections = detections.with_nms(
|
| 91 |
+
class_agnostic=with_class_agnostic_nms,
|
| 92 |
+
threshold=iou_threshold
|
| 93 |
+
)
|
| 94 |
+
if with_segmentation:
|
| 95 |
+
detections.mask = inference_with_boxes(
|
| 96 |
+
image=input_image,
|
| 97 |
+
xyxy=detections.xyxy,
|
| 98 |
+
model=EFFICIENT_SAM_MODEL,
|
| 99 |
+
device=DEVICE
|
| 100 |
+
)
|
| 101 |
+
output_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
|
| 102 |
+
output_image = annotate_image(
|
| 103 |
+
input_image=output_image,
|
| 104 |
+
detections=detections,
|
| 105 |
+
categories=categories,
|
| 106 |
+
with_confidence=with_confidence
|
| 107 |
+
)
|
| 108 |
+
return cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def process_video(
|
| 112 |
+
input_video: str,
|
| 113 |
+
categories: str,
|
| 114 |
+
confidence_threshold: float = 0.3,
|
| 115 |
+
iou_threshold: float = 0.5,
|
| 116 |
+
with_segmentation: bool = True,
|
| 117 |
+
with_confidence: bool = False,
|
| 118 |
+
with_class_agnostic_nms: bool = False,
|
| 119 |
+
progress=gr.Progress(track_tqdm=True)
|
| 120 |
+
) -> str:
|
| 121 |
+
# cleanup of old video files
|
| 122 |
+
remove_files_older_than(RESULTS, 30)
|
| 123 |
+
|
| 124 |
+
categories = process_categories(categories)
|
| 125 |
+
YOLO_WORLD_MODEL.set_classes(categories)
|
| 126 |
+
video_info = sv.VideoInfo.from_video_path(input_video)
|
| 127 |
+
total = calculate_end_frame_index(input_video)
|
| 128 |
+
frame_generator = sv.get_video_frames_generator(
|
| 129 |
+
source_path=input_video,
|
| 130 |
+
end=total
|
| 131 |
+
)
|
| 132 |
+
result_file_name = generate_file_name(extension="mp4")
|
| 133 |
+
result_file_path = os.path.join(RESULTS, result_file_name)
|
| 134 |
+
with sv.VideoSink(result_file_path, video_info=video_info) as sink:
|
| 135 |
+
for _ in tqdm(range(total), desc="Processing video..."):
|
| 136 |
+
frame = next(frame_generator)
|
| 137 |
+
results = YOLO_WORLD_MODEL.infer(frame, confidence=confidence_threshold)
|
| 138 |
+
detections = sv.Detections.from_inference(results)
|
| 139 |
+
detections = detections.with_nms(
|
| 140 |
+
class_agnostic=with_class_agnostic_nms,
|
| 141 |
+
threshold=iou_threshold
|
| 142 |
+
)
|
| 143 |
+
if with_segmentation:
|
| 144 |
+
detections.mask = inference_with_boxes(
|
| 145 |
+
image=frame,
|
| 146 |
+
xyxy=detections.xyxy,
|
| 147 |
+
model=EFFICIENT_SAM_MODEL,
|
| 148 |
+
device=DEVICE
|
| 149 |
+
)
|
| 150 |
+
frame = annotate_image(
|
| 151 |
+
input_image=frame,
|
| 152 |
+
detections=detections,
|
| 153 |
+
categories=categories,
|
| 154 |
+
with_confidence=with_confidence
|
| 155 |
+
)
|
| 156 |
+
sink.write_frame(frame)
|
| 157 |
+
return result_file_path
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
confidence_threshold_component = gr.Slider(
|
| 161 |
+
minimum=0,
|
| 162 |
+
maximum=1.0,
|
| 163 |
+
value=0.3,
|
| 164 |
+
step=0.01,
|
| 165 |
+
label="Confidence Threshold",
|
| 166 |
+
info=(
|
| 167 |
+
"The confidence threshold for the YOLO-World model. Lower the threshold to "
|
| 168 |
+
"reduce false negatives, enhancing the model's sensitivity to detect "
|
| 169 |
+
"sought-after objects. Conversely, increase the threshold to minimize false "
|
| 170 |
+
"positives, preventing the model from identifying objects it shouldn't."
|
| 171 |
+
))
|
| 172 |
+
|
| 173 |
+
iou_threshold_component = gr.Slider(
|
| 174 |
+
minimum=0,
|
| 175 |
+
maximum=1.0,
|
| 176 |
+
value=0.5,
|
| 177 |
+
step=0.01,
|
| 178 |
+
label="IoU Threshold",
|
| 179 |
+
info=(
|
| 180 |
+
"The Intersection over Union (IoU) threshold for non-maximum suppression. "
|
| 181 |
+
"Decrease the value to lessen the occurrence of overlapping bounding boxes, "
|
| 182 |
+
"making the detection process stricter. On the other hand, increase the value "
|
| 183 |
+
"to allow more overlapping bounding boxes, accommodating a broader range of "
|
| 184 |
+
"detections."
|
| 185 |
+
))
|
| 186 |
+
|
| 187 |
+
with_segmentation_component = gr.Checkbox(
|
| 188 |
+
value=True,
|
| 189 |
+
label="With Segmentation",
|
| 190 |
+
info=(
|
| 191 |
+
"Whether to run EfficientSAM for instance segmentation."
|
| 192 |
+
)
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
with_confidence_component = gr.Checkbox(
|
| 196 |
+
value=False,
|
| 197 |
+
label="Display Confidence",
|
| 198 |
+
info=(
|
| 199 |
+
"Whether to display the confidence of the detected objects."
|
| 200 |
+
)
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
with_class_agnostic_nms_component = gr.Checkbox(
|
| 204 |
+
value=False,
|
| 205 |
+
label="Use Class-Agnostic NMS",
|
| 206 |
+
info=(
|
| 207 |
+
"Suppress overlapping bounding boxes across all classes."
|
| 208 |
+
)
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
with gr.Blocks() as demo:
|
| 213 |
+
gr.Markdown(MARKDOWN)
|
| 214 |
+
with gr.Accordion("Configuration", open=False):
|
| 215 |
+
confidence_threshold_component.render()
|
| 216 |
+
iou_threshold_component.render()
|
| 217 |
+
with gr.Row():
|
| 218 |
+
with_segmentation_component.render()
|
| 219 |
+
with_confidence_component.render()
|
| 220 |
+
with_class_agnostic_nms_component.render()
|
| 221 |
+
with gr.Tab(label="Image"):
|
| 222 |
+
with gr.Row():
|
| 223 |
+
input_image_component = gr.Image(
|
| 224 |
+
type='numpy',
|
| 225 |
+
label='Input Image'
|
| 226 |
+
)
|
| 227 |
+
output_image_component = gr.Image(
|
| 228 |
+
type='numpy',
|
| 229 |
+
label='Output Image'
|
| 230 |
+
)
|
| 231 |
+
with gr.Row():
|
| 232 |
+
image_categories_text_component = gr.Textbox(
|
| 233 |
+
label='Categories',
|
| 234 |
+
placeholder='comma separated list of categories',
|
| 235 |
+
scale=7
|
| 236 |
+
)
|
| 237 |
+
image_submit_button_component = gr.Button(
|
| 238 |
+
value='Submit',
|
| 239 |
+
scale=1,
|
| 240 |
+
variant='primary'
|
| 241 |
+
)
|
| 242 |
+
gr.Examples(
|
| 243 |
+
fn=process_image,
|
| 244 |
+
examples=IMAGE_EXAMPLES,
|
| 245 |
+
inputs=[
|
| 246 |
+
input_image_component,
|
| 247 |
+
image_categories_text_component,
|
| 248 |
+
confidence_threshold_component,
|
| 249 |
+
iou_threshold_component,
|
| 250 |
+
with_segmentation_component,
|
| 251 |
+
with_confidence_component,
|
| 252 |
+
with_class_agnostic_nms_component
|
| 253 |
+
],
|
| 254 |
+
outputs=output_image_component
|
| 255 |
+
)
|
| 256 |
+
with gr.Tab(label="Video"):
|
| 257 |
+
with gr.Row():
|
| 258 |
+
input_video_component = gr.Video(
|
| 259 |
+
label='Input Video'
|
| 260 |
+
)
|
| 261 |
+
output_video_component = gr.Video(
|
| 262 |
+
label='Output Video'
|
| 263 |
+
)
|
| 264 |
+
with gr.Row():
|
| 265 |
+
video_categories_text_component = gr.Textbox(
|
| 266 |
+
label='Categories',
|
| 267 |
+
placeholder='comma separated list of categories',
|
| 268 |
+
scale=7
|
| 269 |
+
)
|
| 270 |
+
video_submit_button_component = gr.Button(
|
| 271 |
+
value='Submit',
|
| 272 |
+
scale=1,
|
| 273 |
+
variant='primary'
|
| 274 |
+
)
|
| 275 |
+
gr.Examples(
|
| 276 |
+
fn=process_video,
|
| 277 |
+
examples=VIDEO_EXAMPLES,
|
| 278 |
+
inputs=[
|
| 279 |
+
input_video_component,
|
| 280 |
+
video_categories_text_component,
|
| 281 |
+
confidence_threshold_component,
|
| 282 |
+
iou_threshold_component,
|
| 283 |
+
with_segmentation_component,
|
| 284 |
+
with_confidence_component,
|
| 285 |
+
with_class_agnostic_nms_component
|
| 286 |
+
],
|
| 287 |
+
outputs=output_image_component
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
image_submit_button_component.click(
|
| 291 |
+
fn=process_image,
|
| 292 |
+
inputs=[
|
| 293 |
+
input_image_component,
|
| 294 |
+
image_categories_text_component,
|
| 295 |
+
confidence_threshold_component,
|
| 296 |
+
iou_threshold_component,
|
| 297 |
+
with_segmentation_component,
|
| 298 |
+
with_confidence_component,
|
| 299 |
+
with_class_agnostic_nms_component
|
| 300 |
+
],
|
| 301 |
+
outputs=output_image_component
|
| 302 |
+
)
|
| 303 |
+
video_submit_button_component.click(
|
| 304 |
+
fn=process_video,
|
| 305 |
+
inputs=[
|
| 306 |
+
input_video_component,
|
| 307 |
+
video_categories_text_component,
|
| 308 |
+
confidence_threshold_component,
|
| 309 |
+
iou_threshold_component,
|
| 310 |
+
with_segmentation_component,
|
| 311 |
+
with_confidence_component,
|
| 312 |
+
with_class_agnostic_nms_component
|
| 313 |
+
],
|
| 314 |
+
outputs=output_video_component
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
demo.launch(debug=False, show_error=True, max_threads=1)
|
efficient_sam_s_cpu.jit
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8b63ab268e9020b0fb7fc9f46e742644d4c9ea6e5d9caf56045f0afb6475db09
|
| 3 |
+
size 106006979
|
efficient_sam_s_gpu.jit
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e47c589ead2c6a80d38050ce63083a551e288db27113d534e0278270fc7cba26
|
| 3 |
+
size 106006979
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
inference-gpu[yolo-world]==0.9.13
|
| 2 |
+
supervision==0.19.0rc3
|
| 3 |
+
gradio==4.19.0
|
| 4 |
+
tqdm==4.66.2
|
utils/__init__.py
ADDED
|
File without changes
|
utils/efficient_sam.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from torchvision.transforms import ToTensor
|
| 4 |
+
|
| 5 |
+
GPU_EFFICIENT_SAM_CHECKPOINT = "efficient_sam_s_gpu.jit"
|
| 6 |
+
CPU_EFFICIENT_SAM_CHECKPOINT = "efficient_sam_s_cpu.jit"
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def load(device: torch.device) -> torch.jit.ScriptModule:
|
| 10 |
+
if device.type == "cuda":
|
| 11 |
+
model = torch.jit.load(GPU_EFFICIENT_SAM_CHECKPOINT)
|
| 12 |
+
else:
|
| 13 |
+
model = torch.jit.load(CPU_EFFICIENT_SAM_CHECKPOINT)
|
| 14 |
+
model.eval()
|
| 15 |
+
return model
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def inference_with_box(
|
| 19 |
+
image: np.ndarray,
|
| 20 |
+
box: np.ndarray,
|
| 21 |
+
model: torch.jit.ScriptModule,
|
| 22 |
+
device: torch.device
|
| 23 |
+
) -> np.ndarray:
|
| 24 |
+
bbox = torch.reshape(torch.tensor(box), [1, 1, 2, 2])
|
| 25 |
+
bbox_labels = torch.reshape(torch.tensor([2, 3]), [1, 1, 2])
|
| 26 |
+
img_tensor = ToTensor()(image)
|
| 27 |
+
|
| 28 |
+
predicted_logits, predicted_iou = model(
|
| 29 |
+
img_tensor[None, ...].to(device),
|
| 30 |
+
bbox.to(device),
|
| 31 |
+
bbox_labels.to(device),
|
| 32 |
+
)
|
| 33 |
+
predicted_logits = predicted_logits.cpu()
|
| 34 |
+
all_masks = torch.ge(torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5).numpy()
|
| 35 |
+
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
|
| 36 |
+
|
| 37 |
+
max_predicted_iou = -1
|
| 38 |
+
selected_mask_using_predicted_iou = None
|
| 39 |
+
for m in range(all_masks.shape[0]):
|
| 40 |
+
curr_predicted_iou = predicted_iou[m]
|
| 41 |
+
if (
|
| 42 |
+
curr_predicted_iou > max_predicted_iou
|
| 43 |
+
or selected_mask_using_predicted_iou is None
|
| 44 |
+
):
|
| 45 |
+
max_predicted_iou = curr_predicted_iou
|
| 46 |
+
selected_mask_using_predicted_iou = all_masks[m]
|
| 47 |
+
return selected_mask_using_predicted_iou
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def inference_with_boxes(
|
| 51 |
+
image: np.ndarray,
|
| 52 |
+
xyxy: np.ndarray,
|
| 53 |
+
model: torch.jit.ScriptModule,
|
| 54 |
+
device: torch.device
|
| 55 |
+
) -> np.ndarray:
|
| 56 |
+
masks = []
|
| 57 |
+
for [x_min, y_min, x_max, y_max] in xyxy:
|
| 58 |
+
box = np.array([[x_min, y_min], [x_max, y_max]])
|
| 59 |
+
mask = inference_with_box(image, box, model, device)
|
| 60 |
+
masks.append(mask)
|
| 61 |
+
return np.array(masks)
|
utils/video.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import datetime
|
| 3 |
+
import uuid
|
| 4 |
+
from typing import List
|
| 5 |
+
|
| 6 |
+
import supervision as sv
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
MAX_VIDEO_LENGTH_SEC = 2
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def generate_file_name(extension="mp4"):
|
| 13 |
+
current_datetime = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
| 14 |
+
unique_id = uuid.uuid4()
|
| 15 |
+
return f"{current_datetime}_{unique_id}.{extension}"
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def list_files_older_than(directory: str, diff_minutes: int) -> List[str]:
|
| 19 |
+
diff_seconds = diff_minutes * 60
|
| 20 |
+
now = datetime.datetime.now()
|
| 21 |
+
older_files: List[str] = []
|
| 22 |
+
|
| 23 |
+
for filename in os.listdir(directory):
|
| 24 |
+
file_path = os.path.join(directory, filename)
|
| 25 |
+
if os.path.isfile(file_path):
|
| 26 |
+
file_mod_time = os.path.getmtime(file_path)
|
| 27 |
+
file_mod_datetime = datetime.datetime.fromtimestamp(file_mod_time)
|
| 28 |
+
time_diff = now - file_mod_datetime
|
| 29 |
+
if time_diff.total_seconds() > diff_seconds:
|
| 30 |
+
older_files.append(file_path)
|
| 31 |
+
|
| 32 |
+
return older_files
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def remove_files_older_than(directory: str, diff_minutes: int) -> None:
|
| 36 |
+
older_files = list_files_older_than(directory, diff_minutes)
|
| 37 |
+
file_count = len(older_files)
|
| 38 |
+
|
| 39 |
+
for file_path in older_files:
|
| 40 |
+
os.remove(file_path)
|
| 41 |
+
|
| 42 |
+
now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 43 |
+
print(
|
| 44 |
+
f"[{now}] Removed {file_count} files older than {diff_minutes} minutes from "
|
| 45 |
+
f"'{directory}' directory."
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def calculate_end_frame_index(source_video_path: str) -> int:
|
| 50 |
+
video_info = sv.VideoInfo.from_video_path(source_video_path)
|
| 51 |
+
return min(
|
| 52 |
+
video_info.total_frames,
|
| 53 |
+
video_info.fps * MAX_VIDEO_LENGTH_SEC
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def create_directory(directory_path: str) -> None:
|
| 58 |
+
if not os.path.exists(directory_path):
|
| 59 |
+
os.makedirs(directory_path)
|