Spaces:
Runtime error
Runtime error
Anonymous
commited on
Commit
·
15f5208
1
Parent(s):
707f578
more fixes
Browse files- app.py +1 -1
- generate_prompt.py +21 -16
- tasks/ner.py +138 -37
- tasks/nli.py +15 -18
- tasks/qa.py +49 -14
- tasks/summarization.py +30 -5
app.py
CHANGED
|
@@ -131,6 +131,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 131 |
elif task == NER:
|
| 132 |
text_example = {
|
| 133 |
'tokens': sentence,
|
|
|
|
| 134 |
}
|
| 135 |
else:
|
| 136 |
text_example = {
|
|
@@ -138,7 +139,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 138 |
'premise': premise
|
| 139 |
}
|
| 140 |
|
| 141 |
-
print(text_example)
|
| 142 |
prompt = construct_generic_prompt(task, instruction, text_example, zero_shot, num_examples, selected_language, dataset, config)
|
| 143 |
|
| 144 |
return prompt
|
|
|
|
| 131 |
elif task == NER:
|
| 132 |
text_example = {
|
| 133 |
'tokens': sentence,
|
| 134 |
+
'ner_tags': ''
|
| 135 |
}
|
| 136 |
else:
|
| 137 |
text_example = {
|
|
|
|
| 139 |
'premise': premise
|
| 140 |
}
|
| 141 |
|
|
|
|
| 142 |
prompt = construct_generic_prompt(task, instruction, text_example, zero_shot, num_examples, selected_language, dataset, config)
|
| 143 |
|
| 144 |
return prompt
|
generate_prompt.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import csv
|
| 2 |
import enum
|
| 3 |
import json
|
|
@@ -20,7 +21,7 @@ from langchain.prompts import FewShotPromptTemplate, PromptTemplate
|
|
| 20 |
from tqdm import tqdm
|
| 21 |
from yaml.loader import SafeLoader
|
| 22 |
|
| 23 |
-
from tasks import
|
| 24 |
|
| 25 |
|
| 26 |
# from models.model_completion import gpt3x_completion, gemini_completion
|
|
@@ -47,8 +48,12 @@ def gpt3x_completion(
|
|
| 47 |
) -> str:
|
| 48 |
import os
|
| 49 |
import openai
|
| 50 |
-
os.environ["OPENAI_API_KEY"] = ''
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
def get_entities_chatGPT(final_prompt):
|
| 54 |
response = openai.ChatCompletion.create(
|
|
@@ -67,7 +72,7 @@ def mixtral_completion(prompt):
|
|
| 67 |
url = "https://api.together.xyz/v1/chat/completions"
|
| 68 |
|
| 69 |
# Define your Together API key
|
| 70 |
-
together_api_key = "" # Replace with your actual API key
|
| 71 |
|
| 72 |
# Define the request payload
|
| 73 |
payload = {
|
|
@@ -554,6 +559,7 @@ def construct_generic_prompt(task, instruction, test_example, zero_shot, num_exa
|
|
| 554 |
instruction=instruction,
|
| 555 |
test_example=test_example,
|
| 556 |
zero_shot=zero_shot,
|
|
|
|
| 557 |
num_examples=num_examples,
|
| 558 |
lang=str(selected_language).lower(),
|
| 559 |
config=config,
|
|
@@ -612,31 +618,30 @@ class Config:
|
|
| 612 |
def recommend_config(task, lang, model_type):
|
| 613 |
print(task)
|
| 614 |
print(model_type)
|
|
|
|
| 615 |
language_type = _get_language_type(lang)
|
| 616 |
-
config = Config()
|
| 617 |
print(language_type)
|
| 618 |
if task == QA:
|
| 619 |
if model_type == ModelType.English.value:
|
| 620 |
-
config.set(prefix=
|
| 621 |
else:
|
| 622 |
-
config.set(prefix='
|
| 623 |
if task == NER:
|
| 624 |
if model_type == ModelType.English.value:
|
| 625 |
-
config.set(prefix=
|
| 626 |
elif language_type == LanguageType.High:
|
| 627 |
-
config.set(prefix='
|
| 628 |
else:
|
| 629 |
-
config.set(prefix='
|
| 630 |
if task == NLI:
|
| 631 |
if model_type == ModelType.English.value:
|
| 632 |
-
config.set(prefix=
|
| 633 |
elif language_type == LanguageType.High:
|
| 634 |
-
|
| 635 |
-
config.set(prefix='english', context='source', examples='english')
|
| 636 |
else:
|
| 637 |
-
|
| 638 |
-
config.set(prefix='english', context='english', examples='english')
|
| 639 |
if task == SUMMARIZATION:
|
| 640 |
-
config.set(context='
|
| 641 |
|
| 642 |
return config.to_dict()
|
|
|
|
| 1 |
+
import collections
|
| 2 |
import csv
|
| 3 |
import enum
|
| 4 |
import json
|
|
|
|
| 21 |
from tqdm import tqdm
|
| 22 |
from yaml.loader import SafeLoader
|
| 23 |
|
| 24 |
+
from tasks import ner, summarization, qa, nli
|
| 25 |
|
| 26 |
|
| 27 |
# from models.model_completion import gpt3x_completion, gemini_completion
|
|
|
|
| 48 |
) -> str:
|
| 49 |
import os
|
| 50 |
import openai
|
| 51 |
+
os.environ["OPENAI_API_KEY"] = '07d805ec4fbd484ebc923a3a41e1773d'
|
| 52 |
+
OPENAI_API_KEY = '07d805ec4fbd484ebc923a3a41e1773d'
|
| 53 |
+
openai.api_type = "azure"
|
| 54 |
+
openai.api_base = 'https://hebsum-itaim-uks.openai.azure.com/'
|
| 55 |
+
openai.api_version = "2023-03-15-preview"
|
| 56 |
+
openai.api_key = '07d805ec4fbd484ebc923a3a41e1773d'
|
| 57 |
|
| 58 |
def get_entities_chatGPT(final_prompt):
|
| 59 |
response = openai.ChatCompletion.create(
|
|
|
|
| 72 |
url = "https://api.together.xyz/v1/chat/completions"
|
| 73 |
|
| 74 |
# Define your Together API key
|
| 75 |
+
together_api_key = "851cfc39f3d7a246a2342259f5f6fbba4721c6002123365fba2254c9c9c424ad" # Replace with your actual API key
|
| 76 |
|
| 77 |
# Define the request payload
|
| 78 |
payload = {
|
|
|
|
| 559 |
instruction=instruction,
|
| 560 |
test_example=test_example,
|
| 561 |
zero_shot=zero_shot,
|
| 562 |
+
dataset=dataset,
|
| 563 |
num_examples=num_examples,
|
| 564 |
lang=str(selected_language).lower(),
|
| 565 |
config=config,
|
|
|
|
| 618 |
def recommend_config(task, lang, model_type):
|
| 619 |
print(task)
|
| 620 |
print(model_type)
|
| 621 |
+
print(lang)
|
| 622 |
language_type = _get_language_type(lang)
|
| 623 |
+
config = Config(lang, lang, lang, lang)
|
| 624 |
print(language_type)
|
| 625 |
if task == QA:
|
| 626 |
if model_type == ModelType.English.value:
|
| 627 |
+
config.set(prefix=lang, context=lang, examples=lang, output=lang)
|
| 628 |
else:
|
| 629 |
+
config.set(prefix='English', context=lang, examples=lang, output=lang)
|
| 630 |
if task == NER:
|
| 631 |
if model_type == ModelType.English.value:
|
| 632 |
+
config.set(prefix=lang, context=lang, examples=lang, output=lang)
|
| 633 |
elif language_type == LanguageType.High:
|
| 634 |
+
config.set(prefix='English', context=lang, examples=lang, output=lang)
|
| 635 |
else:
|
| 636 |
+
config.set(prefix='English', context=lang, examples=lang, output='English')
|
| 637 |
if task == NLI:
|
| 638 |
if model_type == ModelType.English.value:
|
| 639 |
+
config.set(prefix=lang, context=lang, examples=lang, output=lang)
|
| 640 |
elif language_type == LanguageType.High:
|
| 641 |
+
config.set(prefix='English', context=lang, examples='English')
|
|
|
|
| 642 |
else:
|
| 643 |
+
config.set(prefix='English', context='English', examples='English')
|
|
|
|
| 644 |
if task == SUMMARIZATION:
|
| 645 |
+
config.set(context='English')
|
| 646 |
|
| 647 |
return config.to_dict()
|
tasks/ner.py
CHANGED
|
@@ -1,33 +1,56 @@
|
|
| 1 |
-
from typing import List, Dict, Any
|
| 2 |
|
|
|
|
|
|
|
| 3 |
from easygoogletranslate import EasyGoogleTranslate
|
| 4 |
from langchain.prompts import PromptTemplate, FewShotPromptTemplate
|
| 5 |
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"english": "en",
|
| 8 |
-
"
|
| 9 |
-
"
|
| 10 |
-
"
|
| 11 |
-
"
|
| 12 |
-
"
|
| 13 |
-
"
|
| 14 |
-
"
|
| 15 |
-
"
|
| 16 |
-
"
|
| 17 |
-
"
|
| 18 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
"vietnamese": "vi",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
"italian": "it",
|
| 21 |
-
"
|
| 22 |
-
"
|
| 23 |
-
"
|
| 24 |
-
"
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
"bambara": "bam",
|
| 32 |
"ewe": "ewe",
|
| 33 |
"fon": "fon",
|
|
@@ -58,7 +81,7 @@ def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
|
| 58 |
return translator.translate(basic_instruction)
|
| 59 |
|
| 60 |
|
| 61 |
-
def create_instruction(lang: str, expected_output: str):
|
| 62 |
basic_instruction = f"""You are an NLP assistant whose
|
| 63 |
purpose is to perform Named Entity Recognition
|
| 64 |
(NER). You will need to give each entity a tag, from the following:
|
|
@@ -69,11 +92,90 @@ def create_instruction(lang: str, expected_output: str):
|
|
| 69 |
The entities should be in {expected_output} language"""
|
| 70 |
|
| 71 |
return (
|
| 72 |
-
|
| 73 |
if lang == "english"
|
| 74 |
else _translate_instruction(basic_instruction, target_language=lang)
|
| 75 |
)
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
def construct_prompt(
|
| 78 |
instruction: str,
|
| 79 |
test_example: dict,
|
|
@@ -84,20 +186,21 @@ def construct_prompt(
|
|
| 84 |
config: Dict[str, str],
|
| 85 |
):
|
| 86 |
if not instruction:
|
| 87 |
-
|
| 88 |
-
instruction = create_instruction(lang, config['prefix'])
|
| 89 |
|
| 90 |
example_prompt = PromptTemplate(
|
| 91 |
-
input_variables=["
|
|
|
|
| 92 |
)
|
| 93 |
|
| 94 |
-
zero_shot_template = f"""{instruction}""" + "\n
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
test_data = load_xlsum_data(lang=lang, split="test", limit=100)
|
| 97 |
|
| 98 |
-
print(test_data)
|
| 99 |
-
print(num_examples)
|
| 100 |
-
print(lang)
|
| 101 |
ic_examples = []
|
| 102 |
if not zero_shot:
|
| 103 |
|
|
@@ -121,12 +224,10 @@ def construct_prompt(
|
|
| 121 |
else PromptTemplate(input_variables=["text"], template=zero_shot_template)
|
| 122 |
)
|
| 123 |
|
| 124 |
-
print("lang", lang)
|
| 125 |
-
print(config["input"] , lang)
|
| 126 |
if config["input"] != lang:
|
| 127 |
test_example = _translate_example(
|
| 128 |
example=test_example, src_language=lang, target_language=config["input"]
|
| 129 |
)
|
| 130 |
|
| 131 |
-
print(
|
| 132 |
-
return prompt.format(text=test_example["
|
|
|
|
| 1 |
+
from typing import List, Dict, Any, Union
|
| 2 |
|
| 3 |
+
import numpy as np
|
| 4 |
+
from datasets import load_dataset, Dataset
|
| 5 |
from easygoogletranslate import EasyGoogleTranslate
|
| 6 |
from langchain.prompts import PromptTemplate, FewShotPromptTemplate
|
| 7 |
|
| 8 |
+
|
| 9 |
+
LANGAUGE_TO_PREFIX = {
|
| 10 |
+
|
| 11 |
+
"chinese_simplified": "zh-CN",
|
| 12 |
+
"french": "fr",
|
| 13 |
+
"portuguese": "pt",
|
| 14 |
"english": "en",
|
| 15 |
+
"arabic": "ar",
|
| 16 |
+
"hindi": "hi",
|
| 17 |
+
"indonesian": "id",
|
| 18 |
+
"amharic": "am",
|
| 19 |
+
"bengali": "bn",
|
| 20 |
+
"burmese": "my",
|
| 21 |
+
"uzbek": "uz",
|
| 22 |
+
"nepali": "ne",
|
| 23 |
+
"japanese": "ja",
|
| 24 |
+
"spanish": "es",
|
| 25 |
+
"turkish": "tr",
|
| 26 |
+
"persian": "fa",
|
| 27 |
+
"azerbaijani": "az",
|
| 28 |
+
"korean": "ko",
|
| 29 |
+
"hebrew": "he",
|
| 30 |
+
"telugu": "te",
|
| 31 |
+
"german": "de",
|
| 32 |
+
"greek": "el",
|
| 33 |
+
"tamil": "ta",
|
| 34 |
+
"assamese": "as",
|
| 35 |
"vietnamese": "vi",
|
| 36 |
+
"russian": "ru",
|
| 37 |
+
"romanian": "ro",
|
| 38 |
+
"malayalam": "ml",
|
| 39 |
+
"swahili": "sw",
|
| 40 |
+
"bulgarian": "bg",
|
| 41 |
+
"thai": "th",
|
| 42 |
+
"urdu": "ur",
|
| 43 |
"italian": "it",
|
| 44 |
+
"polish": "pl",
|
| 45 |
+
"dutch": "nl",
|
| 46 |
+
"swedish": "sv",
|
| 47 |
+
"danish": "da",
|
| 48 |
+
"norwegian": "no",
|
| 49 |
+
"finnish": "fi",
|
| 50 |
+
"hungarian": "hu",
|
| 51 |
+
"czech": "cs",
|
| 52 |
+
"slovak": "sk",
|
| 53 |
+
"ukrainian": "uk",
|
| 54 |
"bambara": "bam",
|
| 55 |
"ewe": "ewe",
|
| 56 |
"fon": "fon",
|
|
|
|
| 81 |
return translator.translate(basic_instruction)
|
| 82 |
|
| 83 |
|
| 84 |
+
def create_instruction(lang: str, instruction_language: str, expected_output: str):
|
| 85 |
basic_instruction = f"""You are an NLP assistant whose
|
| 86 |
purpose is to perform Named Entity Recognition
|
| 87 |
(NER). You will need to give each entity a tag, from the following:
|
|
|
|
| 92 |
The entities should be in {expected_output} language"""
|
| 93 |
|
| 94 |
return (
|
| 95 |
+
instruction_language
|
| 96 |
if lang == "english"
|
| 97 |
else _translate_instruction(basic_instruction, target_language=lang)
|
| 98 |
)
|
| 99 |
|
| 100 |
+
|
| 101 |
+
def load_wikiann_dataset(lang, split, limit):
|
| 102 |
+
"""Loads the xlsum dataset"""
|
| 103 |
+
dataset = load_dataset("wikiann", LANGAUGE_TO_PREFIX[lang])[split]
|
| 104 |
+
return dataset.select(np.arange(limit))
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def _translate_example(
|
| 108 |
+
example: Dict[str, str], src_language: str, target_language: str
|
| 109 |
+
):
|
| 110 |
+
translator = EasyGoogleTranslate(
|
| 111 |
+
source_language=LANGAUGE_TO_PREFIX[src_language],
|
| 112 |
+
target_language=LANGAUGE_TO_PREFIX[target_language],
|
| 113 |
+
timeout=30,
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
return {
|
| 117 |
+
"tokens": translator.translate(str(example["tokens"])),
|
| 118 |
+
"ner_tags": translator.translate(str(example["ner_tags"]))
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def choose_few_shot_examples(
|
| 123 |
+
train_dataset: Dataset,
|
| 124 |
+
few_shot_size: int,
|
| 125 |
+
context: List[str],
|
| 126 |
+
selection_criteria: str,
|
| 127 |
+
lang: str,
|
| 128 |
+
) -> List[Dict[str, Union[str, int]]]:
|
| 129 |
+
"""Selects few-shot examples from training datasets
|
| 130 |
+
|
| 131 |
+
Args:
|
| 132 |
+
train_dataset (Dataset): Training Dataset
|
| 133 |
+
few_shot_size (int): Number of few-shot examples
|
| 134 |
+
selection_criteria (few_shot_selection): How to select few-shot examples. Choices: [random, first_k]
|
| 135 |
+
|
| 136 |
+
Returns:
|
| 137 |
+
List[Dict[str, Union[str, int]]]: Selected examples
|
| 138 |
+
"""
|
| 139 |
+
selected_examples = []
|
| 140 |
+
|
| 141 |
+
example_idxs = []
|
| 142 |
+
if selection_criteria == "first_k":
|
| 143 |
+
example_idxs = list(range(few_shot_size))
|
| 144 |
+
elif selection_criteria == "random":
|
| 145 |
+
example_idxs = (
|
| 146 |
+
np.random.choice(len(train_dataset), size=few_shot_size, replace=True)
|
| 147 |
+
.astype(int)
|
| 148 |
+
.tolist()
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
ic_examples = [train_dataset[idx] for idx in example_idxs]
|
| 152 |
+
|
| 153 |
+
ic_examples = [
|
| 154 |
+
{
|
| 155 |
+
"tokens": ' '.join(example['tokens']),
|
| 156 |
+
"ner_tags": example['spans']
|
| 157 |
+
}
|
| 158 |
+
for example in ic_examples
|
| 159 |
+
]
|
| 160 |
+
|
| 161 |
+
for idx, ic_language in enumerate(context):
|
| 162 |
+
(
|
| 163 |
+
selected_examples.append(ic_examples[idx])
|
| 164 |
+
if ic_language == lang
|
| 165 |
+
else (
|
| 166 |
+
selected_examples.append(
|
| 167 |
+
_translate_example(
|
| 168 |
+
example=ic_examples[idx],
|
| 169 |
+
src_language=lang,
|
| 170 |
+
target_language=ic_language,
|
| 171 |
+
)
|
| 172 |
+
)
|
| 173 |
+
)
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
return selected_examples
|
| 177 |
+
|
| 178 |
+
|
| 179 |
def construct_prompt(
|
| 180 |
instruction: str,
|
| 181 |
test_example: dict,
|
|
|
|
| 186 |
config: Dict[str, str],
|
| 187 |
):
|
| 188 |
if not instruction:
|
| 189 |
+
instruction = create_instruction(lang, config['prefix'], config['output'])
|
|
|
|
| 190 |
|
| 191 |
example_prompt = PromptTemplate(
|
| 192 |
+
input_variables=["tokens", "ner_tags"],
|
| 193 |
+
template="Sentence: {tokens}\nNer Tags: {ner_tags}",
|
| 194 |
)
|
| 195 |
|
| 196 |
+
zero_shot_template = f"""{instruction}""" + "\n Sentence: {text} " ""
|
| 197 |
+
|
| 198 |
+
try:
|
| 199 |
+
test_data = load_wikiann_dataset(lang=lang, split="test", limit=500)
|
| 200 |
+
except Exception as e:
|
| 201 |
+
raise KeyError(f"{lang} is not supported in 'wikiAnn' dataset, choose supported language in few-shot")
|
| 202 |
|
|
|
|
| 203 |
|
|
|
|
|
|
|
|
|
|
| 204 |
ic_examples = []
|
| 205 |
if not zero_shot:
|
| 206 |
|
|
|
|
| 224 |
else PromptTemplate(input_variables=["text"], template=zero_shot_template)
|
| 225 |
)
|
| 226 |
|
|
|
|
|
|
|
| 227 |
if config["input"] != lang:
|
| 228 |
test_example = _translate_example(
|
| 229 |
example=test_example, src_language=lang, target_language=config["input"]
|
| 230 |
)
|
| 231 |
|
| 232 |
+
print(test_example)
|
| 233 |
+
return prompt.format(text=test_example["tokens"])
|
tasks/nli.py
CHANGED
|
@@ -432,15 +432,14 @@ def process_test_example(
|
|
| 432 |
|
| 433 |
|
| 434 |
def construct_prompt(
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
):
|
| 443 |
-
|
| 444 |
if not instruction:
|
| 445 |
print(lang)
|
| 446 |
instruction = create_instruction(lang)
|
|
@@ -451,17 +450,16 @@ def construct_prompt(
|
|
| 451 |
)
|
| 452 |
|
| 453 |
zero_shot_template = (
|
| 454 |
-
|
| 455 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 456 |
|
| 457 |
-
test_data = load_xnli_dataset(dataset_name, lang, split="test", limit=100)
|
| 458 |
-
|
| 459 |
-
print(test_data)
|
| 460 |
-
print(num_examples)
|
| 461 |
-
print(lang)
|
| 462 |
ic_examples = []
|
| 463 |
if not zero_shot:
|
| 464 |
-
|
| 465 |
ic_examples = choose_few_shot_examples(
|
| 466 |
train_dataset=test_data,
|
| 467 |
few_shot_size=num_examples,
|
|
@@ -485,12 +483,11 @@ def construct_prompt(
|
|
| 485 |
)
|
| 486 |
|
| 487 |
print("lang", lang)
|
| 488 |
-
print(config["input"]
|
| 489 |
if config["input"] != lang:
|
| 490 |
test_example = _translate_example(
|
| 491 |
example=test_example, src_language=lang, target_language=config["input"]
|
| 492 |
)
|
| 493 |
|
| 494 |
return prompt.format(
|
| 495 |
-
hypothesis=test_example["hypothesis"], premise=test_example["premise"]
|
| 496 |
-
)
|
|
|
|
| 432 |
|
| 433 |
|
| 434 |
def construct_prompt(
|
| 435 |
+
instruction: str,
|
| 436 |
+
test_example: dict,
|
| 437 |
+
zero_shot: bool,
|
| 438 |
+
num_examples: int,
|
| 439 |
+
lang: str,
|
| 440 |
+
config: Dict[str, str],
|
| 441 |
+
dataset_name: str = 'xnli'
|
| 442 |
):
|
|
|
|
| 443 |
if not instruction:
|
| 444 |
print(lang)
|
| 445 |
instruction = create_instruction(lang)
|
|
|
|
| 450 |
)
|
| 451 |
|
| 452 |
zero_shot_template = (
|
| 453 |
+
f"""{instruction}""" + "\n Hypothesis: {hypothesis} + \n Premise: {premise}" ""
|
| 454 |
)
|
| 455 |
+
if not zero_shot:
|
| 456 |
+
try:
|
| 457 |
+
test_data = load_xnli_dataset(dataset_name, lang, split="test", limit=100)
|
| 458 |
+
except KeyError as e:
|
| 459 |
+
raise KeyError(f"{lang} is not supported in {dataset_name} dataset, choose supported language in few-shot")
|
| 460 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
ic_examples = []
|
| 462 |
if not zero_shot:
|
|
|
|
| 463 |
ic_examples = choose_few_shot_examples(
|
| 464 |
train_dataset=test_data,
|
| 465 |
few_shot_size=num_examples,
|
|
|
|
| 483 |
)
|
| 484 |
|
| 485 |
print("lang", lang)
|
| 486 |
+
print(config["input"], lang)
|
| 487 |
if config["input"] != lang:
|
| 488 |
test_example = _translate_example(
|
| 489 |
example=test_example, src_language=lang, target_language=config["input"]
|
| 490 |
)
|
| 491 |
|
| 492 |
return prompt.format(
|
| 493 |
+
hypothesis=test_example["hypothesis"], premise=test_example["premise"])
|
|
|
tasks/qa.py
CHANGED
|
@@ -29,7 +29,7 @@ from yaml.loader import SafeLoader
|
|
| 29 |
|
| 30 |
def gemini_completion(prompt):
|
| 31 |
# Define the endpoint URL
|
| 32 |
-
genai.configure(api_key="")
|
| 33 |
model = genai.GenerativeModel("models/gemini-1.0-pro-latest")
|
| 34 |
return model.generate_content(prompt).text
|
| 35 |
|
|
@@ -41,6 +41,14 @@ def gemini_completion(prompt):
|
|
| 41 |
# model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto")
|
| 42 |
# model.to("cuda:04")
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
def get_entities_gpt3_long(prompt):
|
| 46 |
response = openai.ChatCompletion.create(
|
|
@@ -58,8 +66,12 @@ def gpt3x_completion(
|
|
| 58 |
) -> str:
|
| 59 |
import os
|
| 60 |
import openai
|
| 61 |
-
os.environ["OPENAI_API_KEY"] = ''
|
|
|
|
| 62 |
openai.api_type = "azure"
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
def get_entities_chatGPT(final_prompt):
|
| 65 |
response = openai.ChatCompletion.create(
|
|
@@ -84,7 +96,7 @@ def mixtral_completion(prompt):
|
|
| 84 |
url = "https://api.together.xyz/v1/chat/completions"
|
| 85 |
|
| 86 |
# Define your Together API key
|
| 87 |
-
together_api_key = "" # Replace with your actual API key
|
| 88 |
|
| 89 |
# Define the request payload
|
| 90 |
payload = {
|
|
@@ -177,21 +189,43 @@ LANGUAGE_TO_SUFFIX = {
|
|
| 177 |
"indonesian": "id",
|
| 178 |
"amharic": "am",
|
| 179 |
"bengali": "bn",
|
| 180 |
-
"telugu": "te",
|
| 181 |
"burmese": "my",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
"german": "de",
|
| 183 |
"greek": "el",
|
| 184 |
"tamil": "ta",
|
| 185 |
"assamese": "as",
|
| 186 |
-
"hindi": "hi",
|
| 187 |
"vietnamese": "vi",
|
| 188 |
"russian": "ru",
|
| 189 |
-
"telugu": "te",
|
| 190 |
"romanian": "ro",
|
| 191 |
"malayalam": "ml",
|
| 192 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
}
|
| 194 |
|
|
|
|
| 195 |
PARAMS = NewType("PARAMS", Dict[str, Any])
|
| 196 |
|
| 197 |
|
|
@@ -337,7 +371,7 @@ def _translate_prediction_to_output_language(
|
|
| 337 |
return translator.translate(prediction)
|
| 338 |
|
| 339 |
|
| 340 |
-
def create_instruction(lang: str,
|
| 341 |
basic_instruction = (
|
| 342 |
"Answer to the <Question> below, based only to the given <Context>, Follow these instructions: \n "
|
| 343 |
"1. The answer should include only words from the given context \n "
|
|
@@ -347,7 +381,7 @@ def create_instruction(lang: str, expected_output: str):
|
|
| 347 |
)
|
| 348 |
return (
|
| 349 |
basic_instruction
|
| 350 |
-
if
|
| 351 |
else _translate_instruction(basic_instruction, target_language=lang)
|
| 352 |
)
|
| 353 |
|
|
@@ -714,7 +748,7 @@ def construct_prompt(
|
|
| 714 |
dataset_name: str = 'xquad'
|
| 715 |
):
|
| 716 |
if not instruction:
|
| 717 |
-
instruction = create_instruction(lang, config['prefix'])
|
| 718 |
|
| 719 |
example_prompt = PromptTemplate(
|
| 720 |
input_variables=["context", "question", "answers"],
|
|
@@ -724,12 +758,13 @@ def construct_prompt(
|
|
| 724 |
zero_shot_template = (
|
| 725 |
f"""{instruction}""" + " \n <Context>: {context} \n <Question>: {question} " ""
|
| 726 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 727 |
|
| 728 |
-
test_data = load_qa_dataset(dataset_name = dataset_name, lang=lang, split="test", limit=100)
|
| 729 |
|
| 730 |
-
print(test_data)
|
| 731 |
-
print(num_examples)
|
| 732 |
-
print(lang)
|
| 733 |
ic_examples = []
|
| 734 |
if not zero_shot:
|
| 735 |
|
|
|
|
| 29 |
|
| 30 |
def gemini_completion(prompt):
|
| 31 |
# Define the endpoint URL
|
| 32 |
+
genai.configure(api_key="AIzaSyCSvECR2K_ca3QcMBcCHbxMzBpZe3y82iI")
|
| 33 |
model = genai.GenerativeModel("models/gemini-1.0-pro-latest")
|
| 34 |
return model.generate_content(prompt).text
|
| 35 |
|
|
|
|
| 41 |
# model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto")
|
| 42 |
# model.to("cuda:04")
|
| 43 |
|
| 44 |
+
os.environ["OPENAI_API_KEY"] = (
|
| 45 |
+
"sk-proj-YeuUCE17wxVRRjD61Rn8T3BlbkFJr337RfppJB8fadACBXwG"
|
| 46 |
+
)
|
| 47 |
+
OPENAI_API_KEY = "sk-proj-YeuUCE17wxVRRjD61Rn8T3BlbkFJr337RfppJB8fadACBXwG"
|
| 48 |
+
openai.api_key = "sk-proj-YeuUCE17wxVRRjD61Rn8T3BlbkFJr337RfppJB8fadACBXwG"
|
| 49 |
+
|
| 50 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 51 |
+
|
| 52 |
|
| 53 |
def get_entities_gpt3_long(prompt):
|
| 54 |
response = openai.ChatCompletion.create(
|
|
|
|
| 66 |
) -> str:
|
| 67 |
import os
|
| 68 |
import openai
|
| 69 |
+
os.environ["OPENAI_API_KEY"] = '07d805ec4fbd484ebc923a3a41e1773d'
|
| 70 |
+
OPENAI_API_KEY = '07d805ec4fbd484ebc923a3a41e1773d'
|
| 71 |
openai.api_type = "azure"
|
| 72 |
+
openai.api_base = 'https://hebsum-itaim-uks.openai.azure.com/'
|
| 73 |
+
openai.api_version = "2023-03-15-preview"
|
| 74 |
+
openai.api_key = '07d805ec4fbd484ebc923a3a41e1773d'
|
| 75 |
|
| 76 |
def get_entities_chatGPT(final_prompt):
|
| 77 |
response = openai.ChatCompletion.create(
|
|
|
|
| 96 |
url = "https://api.together.xyz/v1/chat/completions"
|
| 97 |
|
| 98 |
# Define your Together API key
|
| 99 |
+
together_api_key = "851cfc39f3d7a246a2342259f5f6fbba4721c6002123365fba2254c9c9c424ad" # Replace with your actual API key
|
| 100 |
|
| 101 |
# Define the request payload
|
| 102 |
payload = {
|
|
|
|
| 189 |
"indonesian": "id",
|
| 190 |
"amharic": "am",
|
| 191 |
"bengali": "bn",
|
|
|
|
| 192 |
"burmese": "my",
|
| 193 |
+
"uzbek": "uz",
|
| 194 |
+
"nepali": "ne",
|
| 195 |
+
"japanese": "ja",
|
| 196 |
+
"spanish": "es",
|
| 197 |
+
"turkish": "tr",
|
| 198 |
+
"persian": "fa",
|
| 199 |
+
"azerbaijani": "az",
|
| 200 |
+
"korean": "ko",
|
| 201 |
+
"hebrew": "he",
|
| 202 |
+
"telugu": "te",
|
| 203 |
"german": "de",
|
| 204 |
"greek": "el",
|
| 205 |
"tamil": "ta",
|
| 206 |
"assamese": "as",
|
|
|
|
| 207 |
"vietnamese": "vi",
|
| 208 |
"russian": "ru",
|
|
|
|
| 209 |
"romanian": "ro",
|
| 210 |
"malayalam": "ml",
|
| 211 |
+
"swahili": "sw",
|
| 212 |
+
"bulgarian": "bg",
|
| 213 |
+
"thai": "th",
|
| 214 |
+
"urdu": "ur",
|
| 215 |
+
"italian": "it",
|
| 216 |
+
"polish": "pl",
|
| 217 |
+
"dutch": "nl",
|
| 218 |
+
"swedish": "sv",
|
| 219 |
+
"danish": "da",
|
| 220 |
+
"norwegian": "no",
|
| 221 |
+
"finnish": "fi",
|
| 222 |
+
"hungarian": "hu",
|
| 223 |
+
"czech": "cs",
|
| 224 |
+
"slovak": "sk",
|
| 225 |
+
"ukrainian": "uk"
|
| 226 |
}
|
| 227 |
|
| 228 |
+
|
| 229 |
PARAMS = NewType("PARAMS", Dict[str, Any])
|
| 230 |
|
| 231 |
|
|
|
|
| 371 |
return translator.translate(prediction)
|
| 372 |
|
| 373 |
|
| 374 |
+
def create_instruction(lang: str, instruction_language: str, expected_output):
|
| 375 |
basic_instruction = (
|
| 376 |
"Answer to the <Question> below, based only to the given <Context>, Follow these instructions: \n "
|
| 377 |
"1. The answer should include only words from the given context \n "
|
|
|
|
| 381 |
)
|
| 382 |
return (
|
| 383 |
basic_instruction
|
| 384 |
+
if instruction_language == "english"
|
| 385 |
else _translate_instruction(basic_instruction, target_language=lang)
|
| 386 |
)
|
| 387 |
|
|
|
|
| 748 |
dataset_name: str = 'xquad'
|
| 749 |
):
|
| 750 |
if not instruction:
|
| 751 |
+
instruction = create_instruction(lang, config['prefix'], config['output'])
|
| 752 |
|
| 753 |
example_prompt = PromptTemplate(
|
| 754 |
input_variables=["context", "question", "answers"],
|
|
|
|
| 758 |
zero_shot_template = (
|
| 759 |
f"""{instruction}""" + " \n <Context>: {context} \n <Question>: {question} " ""
|
| 760 |
)
|
| 761 |
+
if not zero_shot:
|
| 762 |
+
try:
|
| 763 |
+
test_data = load_qa_dataset(dataset_name = dataset_name, lang=lang, split="test", limit=100)
|
| 764 |
+
except Exception as e:
|
| 765 |
+
raise KeyError(f"{lang} is not supported in {dataset_name}")
|
| 766 |
|
|
|
|
| 767 |
|
|
|
|
|
|
|
|
|
|
| 768 |
ic_examples = []
|
| 769 |
if not zero_shot:
|
| 770 |
|
tasks/summarization.py
CHANGED
|
@@ -1,9 +1,10 @@
|
|
| 1 |
-
from typing import List, Dict,
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
from datasets import Dataset, load_dataset
|
| 4 |
from easygoogletranslate import EasyGoogleTranslate
|
| 5 |
from langchain.prompts import PromptTemplate, FewShotPromptTemplate
|
| 6 |
-
|
| 7 |
LANGUAGE_TO_SUFFIX = {
|
| 8 |
"chinese_simplified": "zh-CN",
|
| 9 |
"french": "fr",
|
|
@@ -24,6 +25,30 @@ LANGUAGE_TO_SUFFIX = {
|
|
| 24 |
"azerbaijani": "az",
|
| 25 |
"korean": "ko",
|
| 26 |
"hebrew": "he",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
}
|
| 28 |
|
| 29 |
|
|
@@ -56,15 +81,15 @@ def choose_few_shot_examples(
|
|
| 56 |
def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
| 57 |
translator = EasyGoogleTranslate(
|
| 58 |
source_language="en",
|
| 59 |
-
target_language=
|
| 60 |
timeout=50,
|
| 61 |
)
|
| 62 |
return translator.translate(basic_instruction)
|
| 63 |
|
| 64 |
|
| 65 |
def _translate_example(example: Dict[str, str], src_language: str, target_language: str):
|
| 66 |
-
translator = EasyGoogleTranslate(source_language=
|
| 67 |
-
target_language=
|
| 68 |
timeout=30)
|
| 69 |
try:
|
| 70 |
return {'text': translator.translate(example['text']), 'summary': ''}
|
|
|
|
| 1 |
+
from typing import List, Dict, Union
|
| 2 |
+
|
| 3 |
import numpy as np
|
| 4 |
from datasets import Dataset, load_dataset
|
| 5 |
from easygoogletranslate import EasyGoogleTranslate
|
| 6 |
from langchain.prompts import PromptTemplate, FewShotPromptTemplate
|
| 7 |
+
|
| 8 |
LANGUAGE_TO_SUFFIX = {
|
| 9 |
"chinese_simplified": "zh-CN",
|
| 10 |
"french": "fr",
|
|
|
|
| 25 |
"azerbaijani": "az",
|
| 26 |
"korean": "ko",
|
| 27 |
"hebrew": "he",
|
| 28 |
+
"telugu": "te",
|
| 29 |
+
"german": "de",
|
| 30 |
+
"greek": "el",
|
| 31 |
+
"tamil": "ta",
|
| 32 |
+
"assamese": "as",
|
| 33 |
+
"vietnamese": "vi",
|
| 34 |
+
"russian": "ru",
|
| 35 |
+
"romanian": "ro",
|
| 36 |
+
"malayalam": "ml",
|
| 37 |
+
"swahili": "sw",
|
| 38 |
+
"bulgarian": "bg",
|
| 39 |
+
"thai": "th",
|
| 40 |
+
"urdu": "ur",
|
| 41 |
+
"italian": "it",
|
| 42 |
+
"polish": "pl",
|
| 43 |
+
"dutch": "nl",
|
| 44 |
+
"swedish": "sv",
|
| 45 |
+
"danish": "da",
|
| 46 |
+
"norwegian": "no",
|
| 47 |
+
"finnish": "fi",
|
| 48 |
+
"hungarian": "hu",
|
| 49 |
+
"czech": "cs",
|
| 50 |
+
"slovak": "sk",
|
| 51 |
+
"ukrainian": "uk"
|
| 52 |
}
|
| 53 |
|
| 54 |
|
|
|
|
| 81 |
def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
| 82 |
translator = EasyGoogleTranslate(
|
| 83 |
source_language="en",
|
| 84 |
+
target_language=LANGUAGE_TO_SUFFIX[target_language],
|
| 85 |
timeout=50,
|
| 86 |
)
|
| 87 |
return translator.translate(basic_instruction)
|
| 88 |
|
| 89 |
|
| 90 |
def _translate_example(example: Dict[str, str], src_language: str, target_language: str):
|
| 91 |
+
translator = EasyGoogleTranslate(source_language=LANGUAGE_TO_SUFFIX[src_language],
|
| 92 |
+
target_language=LANGUAGE_TO_SUFFIX[target_language],
|
| 93 |
timeout=30)
|
| 94 |
try:
|
| 95 |
return {'text': translator.translate(example['text']), 'summary': ''}
|