Spaces:
Runtime error
Runtime error
Anonymous
commited on
Commit
·
d27fe32
1
Parent(s):
afed1a5
format and clean code
Browse files- app.py +233 -80
- generate_prompt.py +33 -538
- tasks/ner.py +16 -27
- tasks/nli.py +19 -18
- tasks/qa.py +38 -83
- tasks/summarization.py +45 -23
app.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
import os
|
|
|
|
|
|
|
| 3 |
from openai import OpenAI
|
| 4 |
-
from generate_prompt import construct_generic_prompt, recommend_config
|
| 5 |
|
| 6 |
-
|
| 7 |
|
| 8 |
QA = "QA"
|
| 9 |
SUMMARIZATION = "Summarization"
|
|
@@ -14,21 +14,59 @@ tasks_datasets = {
|
|
| 14 |
QA: ["XQuad", "Indicqa"],
|
| 15 |
SUMMARIZATION: ["XLSum", "HeSum"],
|
| 16 |
NLI: ["XNLI"],
|
| 17 |
-
NER: ["MasakaNER", "WikiANN"]
|
| 18 |
}
|
| 19 |
|
| 20 |
# List of all languages
|
| 21 |
languages = [
|
| 22 |
-
"English",
|
| 23 |
-
"
|
| 24 |
-
"
|
| 25 |
-
"
|
| 26 |
-
"
|
| 27 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
]
|
| 29 |
|
| 30 |
|
| 31 |
-
|
| 32 |
def get_datasets(task):
|
| 33 |
return tasks_datasets.get(task, [])
|
| 34 |
|
|
@@ -39,16 +77,25 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 39 |
|
| 40 |
with gr.Accordion(label="Task Details", open=True):
|
| 41 |
with gr.Row():
|
| 42 |
-
task = gr.Dropdown(
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
config_recommendation = gr.Button("Recommend Configuration")
|
| 46 |
with gr.Row():
|
| 47 |
-
config_prompt = gr.Textbox(
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
| 49 |
with gr.Row():
|
| 50 |
-
# examples_selection = gr.Dropdown(["English", "Source"], label="examples", value='English')
|
| 51 |
-
# output_selection = gr.Dropdown(["English", "Source"], label="output", value='English')
|
| 52 |
with gr.Accordion(label="Prompt Template", open=True):
|
| 53 |
with gr.Column(scale=2):
|
| 54 |
# Set the same background style across all components
|
|
@@ -56,16 +103,41 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 56 |
instruction = gr.Textbox(label="Instruction")
|
| 57 |
with gr.Row(variant="panel"):
|
| 58 |
zero_shot = gr.Checkbox(label="Zero Shot Setting", value=False)
|
| 59 |
-
with gr.Accordion(
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
with gr.Row(equal_height=True, variant="panel"):
|
| 64 |
-
with gr.Accordion(
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
# Accordion for Few Shot example selection
|
| 70 |
with gr.Accordion(label="Prompt Input Data", open=False):
|
| 71 |
question = gr.Textbox(label="Question", visible=True)
|
|
@@ -78,87 +150,145 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 78 |
generate_button = gr.Button("Generate Prompt")
|
| 79 |
|
| 80 |
with gr.Row():
|
| 81 |
-
prompt = gr.Textbox(
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
def update_datasets(selected_task):
|
| 85 |
return gr.Dropdown(choices=get_datasets(selected_task))
|
| 86 |
|
| 87 |
-
|
| 88 |
def toggle_task_inputs(selected_task):
|
| 89 |
if selected_task == QA:
|
| 90 |
return (
|
| 91 |
-
gr.update(visible=True),
|
| 92 |
-
gr.update(visible=
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
)
|
| 94 |
elif selected_task == SUMMARIZATION:
|
| 95 |
return (
|
| 96 |
-
gr.update(visible=False),
|
| 97 |
-
gr.update(visible=False),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
)
|
| 99 |
elif selected_task == NER:
|
| 100 |
return (
|
| 101 |
-
gr.update(visible=False),
|
| 102 |
-
gr.update(visible=
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
)
|
| 104 |
else:
|
| 105 |
return (
|
| 106 |
-
gr.update(visible=False),
|
| 107 |
-
gr.update(visible=False),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
)
|
| 109 |
|
| 110 |
-
|
| 111 |
def toggle_num_examples(zero_shot_value):
|
| 112 |
# If zero_shot is True, hide the num_examples slider
|
| 113 |
return gr.update(visible=not zero_shot_value)
|
| 114 |
|
| 115 |
def update_language_selection(language):
|
| 116 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
-
def generatePrompt(
|
| 119 |
-
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
-
config = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
if task == QA:
|
| 125 |
text_example = {
|
| 126 |
-
|
| 127 |
-
|
| 128 |
}
|
| 129 |
elif task == SUMMARIZATION:
|
| 130 |
text_example = {
|
| 131 |
-
|
| 132 |
}
|
| 133 |
elif task == NER:
|
| 134 |
-
text_example = {
|
| 135 |
-
'tokens': sentence,
|
| 136 |
-
'ner_tags': ''
|
| 137 |
-
}
|
| 138 |
else:
|
| 139 |
-
text_example = {
|
| 140 |
-
'hypothesis': hypothesis,
|
| 141 |
-
'premise': premise
|
| 142 |
-
}
|
| 143 |
|
| 144 |
-
prompt = construct_generic_prompt(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
return prompt
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
os.environ["OPENAI_API_KEY"] = openai_key
|
| 152 |
client = OpenAI()
|
| 153 |
|
| 154 |
config = {
|
| 155 |
"input": config_input,
|
| 156 |
"prefix": config_prefix,
|
| 157 |
-
"context": config_context.split(
|
| 158 |
"output": config_output,
|
| 159 |
"language": language,
|
| 160 |
"num_examples": num_examples,
|
| 161 |
-
"zero_shot": zero_shot
|
| 162 |
}
|
| 163 |
|
| 164 |
response = client.chat.completions.create(
|
|
@@ -171,7 +301,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 171 |
{"type": "image_url", "image_url": url},
|
| 172 |
{"type": "config", "config": config},
|
| 173 |
{"type": "task", "text": task},
|
| 174 |
-
{"type": "dataset", "text": dataset}
|
| 175 |
],
|
| 176 |
},
|
| 177 |
],
|
|
@@ -183,37 +313,60 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 183 |
chat_history.append((message, out))
|
| 184 |
return "", chat_history
|
| 185 |
|
| 186 |
-
|
| 187 |
# Bind functions to dropdown changes and button click
|
| 188 |
# task.change(fn=update_datasets, outputs=dataset)
|
| 189 |
-
language.change(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
zero_shot.change(fn=toggle_num_examples, inputs=zero_shot, outputs=few_shot)
|
| 192 |
zero_shot.change(fn=toggle_num_examples, inputs=zero_shot, outputs=num_examples)
|
| 193 |
task.change(fn=update_datasets, inputs=task, outputs=dataset)
|
| 194 |
-
task.change(
|
| 195 |
-
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
generate_button.click(
|
| 198 |
generatePrompt,
|
| 199 |
inputs=[
|
| 200 |
-
instruction,
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
],
|
| 205 |
-
outputs=[prompt]
|
| 206 |
)
|
| 207 |
|
| 208 |
config_recommendation.click(
|
| 209 |
-
recommend_config,
|
| 210 |
-
inputs=[
|
| 211 |
-
task,
|
| 212 |
-
language,
|
| 213 |
-
model_type
|
| 214 |
-
],
|
| 215 |
-
outputs=[config_prompt]
|
| 216 |
)
|
| 217 |
|
| 218 |
-
if __name__ ==
|
| 219 |
demo.launch(share=True)
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
from openai import OpenAI
|
|
|
|
| 5 |
|
| 6 |
+
from generate_prompt import construct_generic_prompt, recommend_config
|
| 7 |
|
| 8 |
QA = "QA"
|
| 9 |
SUMMARIZATION = "Summarization"
|
|
|
|
| 14 |
QA: ["XQuad", "Indicqa"],
|
| 15 |
SUMMARIZATION: ["XLSum", "HeSum"],
|
| 16 |
NLI: ["XNLI"],
|
| 17 |
+
NER: ["MasakaNER", "WikiANN"],
|
| 18 |
}
|
| 19 |
|
| 20 |
# List of all languages
|
| 21 |
languages = [
|
| 22 |
+
"English",
|
| 23 |
+
"Spanish",
|
| 24 |
+
"French",
|
| 25 |
+
"German",
|
| 26 |
+
"Chinese",
|
| 27 |
+
"Japanese",
|
| 28 |
+
"Korean",
|
| 29 |
+
"Italian",
|
| 30 |
+
"Portuguese",
|
| 31 |
+
"Russian",
|
| 32 |
+
"Arabic",
|
| 33 |
+
"Hindi",
|
| 34 |
+
"Bengali",
|
| 35 |
+
"Turkish",
|
| 36 |
+
"Vietnamese",
|
| 37 |
+
"Polish",
|
| 38 |
+
"Dutch",
|
| 39 |
+
"Indonesian",
|
| 40 |
+
"Malay",
|
| 41 |
+
"Thai",
|
| 42 |
+
"Greek",
|
| 43 |
+
"Swedish",
|
| 44 |
+
"Hungarian",
|
| 45 |
+
"Finnish",
|
| 46 |
+
"Danish",
|
| 47 |
+
"Norwegian",
|
| 48 |
+
"Hebrew",
|
| 49 |
+
"Czech",
|
| 50 |
+
"Slovak",
|
| 51 |
+
"Bulgarian",
|
| 52 |
+
"Romanian",
|
| 53 |
+
"Serbian",
|
| 54 |
+
"Croatian",
|
| 55 |
+
"Ukrainian",
|
| 56 |
+
"Lithuanian",
|
| 57 |
+
"Latvian",
|
| 58 |
+
"Estonian",
|
| 59 |
+
"Filipino",
|
| 60 |
+
"Icelandic",
|
| 61 |
+
"Irish",
|
| 62 |
+
"Welsh",
|
| 63 |
+
"Maltese",
|
| 64 |
+
"Swahili",
|
| 65 |
+
"Zulu",
|
| 66 |
+
"Afrikaans",
|
| 67 |
]
|
| 68 |
|
| 69 |
|
|
|
|
| 70 |
def get_datasets(task):
|
| 71 |
return tasks_datasets.get(task, [])
|
| 72 |
|
|
|
|
| 77 |
|
| 78 |
with gr.Accordion(label="Task Details", open=True):
|
| 79 |
with gr.Row():
|
| 80 |
+
task = gr.Dropdown(
|
| 81 |
+
label="Task", choices=list(tasks_datasets.keys()), value=QA
|
| 82 |
+
)
|
| 83 |
+
language = gr.Dropdown(
|
| 84 |
+
label="Source Language", choices=languages, value="English"
|
| 85 |
+
)
|
| 86 |
+
model_type = gr.Dropdown(
|
| 87 |
+
label="Model Type",
|
| 88 |
+
choices=["Multilingual", "Standard"],
|
| 89 |
+
value="Multilingual",
|
| 90 |
+
)
|
| 91 |
config_recommendation = gr.Button("Recommend Configuration")
|
| 92 |
with gr.Row():
|
| 93 |
+
config_prompt = gr.Textbox(
|
| 94 |
+
label="Recommended Configuration",
|
| 95 |
+
interactive=False,
|
| 96 |
+
placeholder="Recommended Configuration for this scenerio",
|
| 97 |
+
)
|
| 98 |
with gr.Row():
|
|
|
|
|
|
|
| 99 |
with gr.Accordion(label="Prompt Template", open=True):
|
| 100 |
with gr.Column(scale=2):
|
| 101 |
# Set the same background style across all components
|
|
|
|
| 103 |
instruction = gr.Textbox(label="Instruction")
|
| 104 |
with gr.Row(variant="panel"):
|
| 105 |
zero_shot = gr.Checkbox(label="Zero Shot Setting", value=False)
|
| 106 |
+
with gr.Accordion(
|
| 107 |
+
"Few Shot - Select Type of Examples ",
|
| 108 |
+
open=False,
|
| 109 |
+
visible=True,
|
| 110 |
+
) as few_shot:
|
| 111 |
+
dataset = gr.Dropdown(
|
| 112 |
+
label="Dataset",
|
| 113 |
+
choices=tasks_datasets[QA],
|
| 114 |
+
value="XlSum",
|
| 115 |
+
)
|
| 116 |
+
num_examples = gr.Slider(
|
| 117 |
+
label="Number of examples in context",
|
| 118 |
+
minimum=1,
|
| 119 |
+
maximum=10,
|
| 120 |
+
step=1,
|
| 121 |
+
value=3,
|
| 122 |
+
)
|
| 123 |
with gr.Row(equal_height=True, variant="panel"):
|
| 124 |
+
with gr.Accordion(
|
| 125 |
+
label="Language Component Selection", open=False
|
| 126 |
+
):
|
| 127 |
+
prefix_selection = gr.Dropdown(
|
| 128 |
+
["English", "Source"],
|
| 129 |
+
label="instruction",
|
| 130 |
+
value="English",
|
| 131 |
+
)
|
| 132 |
+
context_selection = gr.Dropdown(
|
| 133 |
+
["English", "Source"], label="context", value="English"
|
| 134 |
+
)
|
| 135 |
+
examples_selection = gr.Dropdown(
|
| 136 |
+
["English", "Source"], label="examples", value="English"
|
| 137 |
+
)
|
| 138 |
+
output_selection = gr.Dropdown(
|
| 139 |
+
["English", "Source"], label="output", value="English"
|
| 140 |
+
)
|
| 141 |
# Accordion for Few Shot example selection
|
| 142 |
with gr.Accordion(label="Prompt Input Data", open=False):
|
| 143 |
question = gr.Textbox(label="Question", visible=True)
|
|
|
|
| 150 |
generate_button = gr.Button("Generate Prompt")
|
| 151 |
|
| 152 |
with gr.Row():
|
| 153 |
+
prompt = gr.Textbox(
|
| 154 |
+
label="Generated Prompt",
|
| 155 |
+
interactive=False,
|
| 156 |
+
placeholder="Generated prompt will appear here.",
|
| 157 |
+
)
|
| 158 |
|
| 159 |
def update_datasets(selected_task):
|
| 160 |
return gr.Dropdown(choices=get_datasets(selected_task))
|
| 161 |
|
|
|
|
| 162 |
def toggle_task_inputs(selected_task):
|
| 163 |
if selected_task == QA:
|
| 164 |
return (
|
| 165 |
+
gr.update(visible=True),
|
| 166 |
+
gr.update(visible=True),
|
| 167 |
+
gr.update(visible=False),
|
| 168 |
+
gr.update(visible=False),
|
| 169 |
+
gr.update(visible=False),
|
| 170 |
+
gr.update(visible=False),
|
| 171 |
)
|
| 172 |
elif selected_task == SUMMARIZATION:
|
| 173 |
return (
|
| 174 |
+
gr.update(visible=False),
|
| 175 |
+
gr.update(visible=False),
|
| 176 |
+
gr.update(visible=True),
|
| 177 |
+
gr.update(visible=False),
|
| 178 |
+
gr.update(visible=False),
|
| 179 |
+
gr.update(visible=False),
|
| 180 |
)
|
| 181 |
elif selected_task == NER:
|
| 182 |
return (
|
| 183 |
+
gr.update(visible=False),
|
| 184 |
+
gr.update(visible=False),
|
| 185 |
+
gr.update(visible=False),
|
| 186 |
+
gr.update(visible=True),
|
| 187 |
+
gr.update(visible=False),
|
| 188 |
+
gr.update(visible=False),
|
| 189 |
)
|
| 190 |
else:
|
| 191 |
return (
|
| 192 |
+
gr.update(visible=False),
|
| 193 |
+
gr.update(visible=False),
|
| 194 |
+
gr.update(visible=False),
|
| 195 |
+
gr.update(visible=False),
|
| 196 |
+
gr.update(visible=True),
|
| 197 |
+
gr.update(visible=True),
|
| 198 |
)
|
| 199 |
|
|
|
|
| 200 |
def toggle_num_examples(zero_shot_value):
|
| 201 |
# If zero_shot is True, hide the num_examples slider
|
| 202 |
return gr.update(visible=not zero_shot_value)
|
| 203 |
|
| 204 |
def update_language_selection(language):
|
| 205 |
+
return (
|
| 206 |
+
gr.update(choices=list({"English", language})),
|
| 207 |
+
gr.update(choices=list({"English", language})),
|
| 208 |
+
gr.update(choices=list({"English", language})),
|
| 209 |
+
gr.update(choices=list({"English", language})),
|
| 210 |
+
)
|
| 211 |
|
| 212 |
+
def generatePrompt(
|
| 213 |
+
instruction,
|
| 214 |
+
num_examples,
|
| 215 |
+
zero_shot,
|
| 216 |
+
task,
|
| 217 |
+
selected_language,
|
| 218 |
+
dataset,
|
| 219 |
+
prefix_selection,
|
| 220 |
+
context_selection,
|
| 221 |
+
examples_selection,
|
| 222 |
+
output_selection,
|
| 223 |
+
text,
|
| 224 |
+
question,
|
| 225 |
+
context,
|
| 226 |
+
sentence,
|
| 227 |
+
hypothesis,
|
| 228 |
+
premise,
|
| 229 |
+
):
|
| 230 |
|
| 231 |
+
config = {
|
| 232 |
+
"prefix": str.lower(prefix_selection),
|
| 233 |
+
"input": str.lower(context_selection),
|
| 234 |
+
"context": str.lower(examples_selection),
|
| 235 |
+
"output": str.lower(output_selection),
|
| 236 |
+
}
|
| 237 |
|
| 238 |
if task == QA:
|
| 239 |
text_example = {
|
| 240 |
+
"context": context,
|
| 241 |
+
"question": question,
|
| 242 |
}
|
| 243 |
elif task == SUMMARIZATION:
|
| 244 |
text_example = {
|
| 245 |
+
"text": text,
|
| 246 |
}
|
| 247 |
elif task == NER:
|
| 248 |
+
text_example = {"tokens": sentence, "ner_tags": ""}
|
|
|
|
|
|
|
|
|
|
| 249 |
else:
|
| 250 |
+
text_example = {"hypothesis": hypothesis, "premise": premise}
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
+
prompt = construct_generic_prompt(
|
| 253 |
+
task,
|
| 254 |
+
instruction,
|
| 255 |
+
text_example,
|
| 256 |
+
zero_shot,
|
| 257 |
+
num_examples,
|
| 258 |
+
selected_language,
|
| 259 |
+
dataset,
|
| 260 |
+
config,
|
| 261 |
+
)
|
| 262 |
|
| 263 |
return prompt
|
| 264 |
|
| 265 |
+
def respond(
|
| 266 |
+
message,
|
| 267 |
+
openai_key,
|
| 268 |
+
url,
|
| 269 |
+
chat_history,
|
| 270 |
+
model,
|
| 271 |
+
config_input,
|
| 272 |
+
config_prefix,
|
| 273 |
+
config_context,
|
| 274 |
+
config_output,
|
| 275 |
+
task,
|
| 276 |
+
dataset,
|
| 277 |
+
language,
|
| 278 |
+
num_examples,
|
| 279 |
+
zero_shot,
|
| 280 |
+
):
|
| 281 |
os.environ["OPENAI_API_KEY"] = openai_key
|
| 282 |
client = OpenAI()
|
| 283 |
|
| 284 |
config = {
|
| 285 |
"input": config_input,
|
| 286 |
"prefix": config_prefix,
|
| 287 |
+
"context": config_context.split(", "),
|
| 288 |
"output": config_output,
|
| 289 |
"language": language,
|
| 290 |
"num_examples": num_examples,
|
| 291 |
+
"zero_shot": zero_shot,
|
| 292 |
}
|
| 293 |
|
| 294 |
response = client.chat.completions.create(
|
|
|
|
| 301 |
{"type": "image_url", "image_url": url},
|
| 302 |
{"type": "config", "config": config},
|
| 303 |
{"type": "task", "text": task},
|
| 304 |
+
{"type": "dataset", "text": dataset},
|
| 305 |
],
|
| 306 |
},
|
| 307 |
],
|
|
|
|
| 313 |
chat_history.append((message, out))
|
| 314 |
return "", chat_history
|
| 315 |
|
|
|
|
| 316 |
# Bind functions to dropdown changes and button click
|
| 317 |
# task.change(fn=update_datasets, outputs=dataset)
|
| 318 |
+
language.change(
|
| 319 |
+
fn=update_language_selection,
|
| 320 |
+
inputs=language,
|
| 321 |
+
outputs=[
|
| 322 |
+
prefix_selection,
|
| 323 |
+
context_selection,
|
| 324 |
+
examples_selection,
|
| 325 |
+
output_selection,
|
| 326 |
+
],
|
| 327 |
+
)
|
| 328 |
|
| 329 |
zero_shot.change(fn=toggle_num_examples, inputs=zero_shot, outputs=few_shot)
|
| 330 |
zero_shot.change(fn=toggle_num_examples, inputs=zero_shot, outputs=num_examples)
|
| 331 |
task.change(fn=update_datasets, inputs=task, outputs=dataset)
|
| 332 |
+
task.change(
|
| 333 |
+
fn=toggle_task_inputs,
|
| 334 |
+
inputs=task,
|
| 335 |
+
outputs=[
|
| 336 |
+
question,
|
| 337 |
+
context,
|
| 338 |
+
text,
|
| 339 |
+
sentence,
|
| 340 |
+
hypothesis,
|
| 341 |
+
premise,
|
| 342 |
+
],
|
| 343 |
+
)
|
| 344 |
generate_button.click(
|
| 345 |
generatePrompt,
|
| 346 |
inputs=[
|
| 347 |
+
instruction,
|
| 348 |
+
num_examples,
|
| 349 |
+
zero_shot,
|
| 350 |
+
task,
|
| 351 |
+
language,
|
| 352 |
+
dataset,
|
| 353 |
+
prefix_selection,
|
| 354 |
+
context_selection,
|
| 355 |
+
examples_selection,
|
| 356 |
+
output_selection,
|
| 357 |
+
text,
|
| 358 |
+
question,
|
| 359 |
+
context,
|
| 360 |
+
sentence,
|
| 361 |
+
hypothesis,
|
| 362 |
+
premise,
|
| 363 |
],
|
| 364 |
+
outputs=[prompt],
|
| 365 |
)
|
| 366 |
|
| 367 |
config_recommendation.click(
|
| 368 |
+
recommend_config, inputs=[task, language, model_type], outputs=[config_prompt]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
)
|
| 370 |
|
| 371 |
+
if __name__ == "__main__":
|
| 372 |
demo.launch(share=True)
|
generate_prompt.py
CHANGED
|
@@ -1,31 +1,10 @@
|
|
| 1 |
-
import collections
|
| 2 |
-
import csv
|
| 3 |
import enum
|
| 4 |
-
import json
|
| 5 |
-
import logging
|
| 6 |
-
import os
|
| 7 |
-
import re
|
| 8 |
-
import string
|
| 9 |
-
import sys
|
| 10 |
-
import unicodedata
|
| 11 |
-
from typing import Any, Dict, List, NewType, Union
|
| 12 |
|
| 13 |
-
import numpy as np
|
| 14 |
-
import openai
|
| 15 |
import pandas as pd
|
| 16 |
-
import requests
|
| 17 |
-
import yaml
|
| 18 |
-
from datasets import Dataset, load_dataset
|
| 19 |
-
from easygoogletranslate import EasyGoogleTranslate
|
| 20 |
-
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
|
| 21 |
-
from tqdm import tqdm
|
| 22 |
-
from yaml.loader import SafeLoader
|
| 23 |
|
| 24 |
-
from tasks import ner,
|
| 25 |
|
| 26 |
|
| 27 |
-
# from models.model_completion import gpt3x_completion, gemini_completion
|
| 28 |
-
|
| 29 |
class LanguageType(enum.Enum):
|
| 30 |
Low = "Low"
|
| 31 |
High = "High"
|
|
@@ -36,504 +15,6 @@ class ModelType(enum.Enum):
|
|
| 36 |
Multilingual = "Multilingual"
|
| 37 |
|
| 38 |
|
| 39 |
-
def get_entities_gpt3_long(prompt):
|
| 40 |
-
response = openai.ChatCompletion.create(
|
| 41 |
-
engine="chatgpt", temperature=0, messages=[{"role": "user", "content": prompt}]
|
| 42 |
-
)
|
| 43 |
-
return response["choices"][0]["message"]["content"]
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
def gpt3x_completion(
|
| 47 |
-
prompt: Union[str, List[Dict[str, str]]],
|
| 48 |
-
) -> str:
|
| 49 |
-
import os
|
| 50 |
-
import openai
|
| 51 |
-
os.environ["OPENAI_API_KEY"] = '07d805ec4fbd484ebc923a3a41e1773d'
|
| 52 |
-
OPENAI_API_KEY = '07d805ec4fbd484ebc923a3a41e1773d'
|
| 53 |
-
openai.api_type = "azure"
|
| 54 |
-
openai.api_base = 'https://hebsum-itaim-uks.openai.azure.com/'
|
| 55 |
-
openai.api_version = "2023-03-15-preview"
|
| 56 |
-
openai.api_key = '07d805ec4fbd484ebc923a3a41e1773d'
|
| 57 |
-
|
| 58 |
-
def get_entities_chatGPT(final_prompt):
|
| 59 |
-
response = openai.ChatCompletion.create(
|
| 60 |
-
engine="gpt35-16k",
|
| 61 |
-
temperature=0,
|
| 62 |
-
messages=[
|
| 63 |
-
{"role": "user", "content": final_prompt}
|
| 64 |
-
]
|
| 65 |
-
)
|
| 66 |
-
return response['choices'][0]['message']['content']
|
| 67 |
-
|
| 68 |
-
return get_entities_chatGPT(final_prompt=prompt)
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
def mixtral_completion(prompt):
|
| 72 |
-
url = "https://api.together.xyz/v1/chat/completions"
|
| 73 |
-
|
| 74 |
-
# Define your Together API key
|
| 75 |
-
together_api_key = "851cfc39f3d7a246a2342259f5f6fbba4721c6002123365fba2254c9c9c424ad" # Replace with your actual API key
|
| 76 |
-
|
| 77 |
-
# Define the request payload
|
| 78 |
-
payload = {
|
| 79 |
-
"temperature": 0,
|
| 80 |
-
"max_tokens": 30,
|
| 81 |
-
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 82 |
-
"messages": [{"role": "user", "content": f"{prompt}"}],
|
| 83 |
-
}
|
| 84 |
-
|
| 85 |
-
# Define request headers
|
| 86 |
-
headers = {
|
| 87 |
-
"Authorization": f"Bearer {together_api_key}",
|
| 88 |
-
"Content-Type": "application/json",
|
| 89 |
-
}
|
| 90 |
-
|
| 91 |
-
# Send POST request
|
| 92 |
-
response = requests.post(url, json=payload, headers=headers)
|
| 93 |
-
|
| 94 |
-
# Check response status
|
| 95 |
-
if response.status_code == 200:
|
| 96 |
-
# Print the response content (API output)
|
| 97 |
-
return response.json()["choices"][0]["message"]["content"]
|
| 98 |
-
else:
|
| 99 |
-
# Print error message if request fails
|
| 100 |
-
print(f"Error: {response.status_code} - {response.text}")
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
XQUAD_LANG2CODES = {
|
| 104 |
-
"bengali": "bn",
|
| 105 |
-
"korean": "ko",
|
| 106 |
-
"swahili": "sw",
|
| 107 |
-
"english": "en",
|
| 108 |
-
"indonesian": "id",
|
| 109 |
-
"arabic": "ar",
|
| 110 |
-
"finnish": "fi",
|
| 111 |
-
"telugu": "te",
|
| 112 |
-
"russian": "ru",
|
| 113 |
-
"german": "de",
|
| 114 |
-
"greek": "el",
|
| 115 |
-
"hindi": "hi",
|
| 116 |
-
"vietnamese": "vi",
|
| 117 |
-
"romanian": "ro",
|
| 118 |
-
}
|
| 119 |
-
|
| 120 |
-
INDICQA_LANG2CODES = {
|
| 121 |
-
"indicqa": "as",
|
| 122 |
-
"bengali": "bn",
|
| 123 |
-
"gujarati": "gu",
|
| 124 |
-
"hindi": "hi",
|
| 125 |
-
"kannada": "kn",
|
| 126 |
-
"malayalam": "ml",
|
| 127 |
-
"marathi": "mr",
|
| 128 |
-
"odia": "or",
|
| 129 |
-
"punjabi": "pa",
|
| 130 |
-
"tamil": "ta",
|
| 131 |
-
"telugu": "te",
|
| 132 |
-
"assamese": "as",
|
| 133 |
-
}
|
| 134 |
-
|
| 135 |
-
PUNCT = {
|
| 136 |
-
chr(i)
|
| 137 |
-
for i in range(sys.maxunicode)
|
| 138 |
-
if unicodedata.category(chr(i)).startswith("P")
|
| 139 |
-
}.union(string.punctuation)
|
| 140 |
-
WHITESPACE_LANGS = ["en", "es", "hi", "vi", "de", "ar"]
|
| 141 |
-
MIXED_SEGMENTATION_LANGS = ["zh"]
|
| 142 |
-
|
| 143 |
-
TYDIQA_LANG2CODES = {
|
| 144 |
-
"bengali": "bn",
|
| 145 |
-
"korean": "ko",
|
| 146 |
-
"swahili": "sw",
|
| 147 |
-
"english": "en",
|
| 148 |
-
"indonesian": "id",
|
| 149 |
-
"arabic": "ar",
|
| 150 |
-
"finnish": "fi",
|
| 151 |
-
"telugu": "te",
|
| 152 |
-
"russian": "ru",
|
| 153 |
-
"assamese": "as",
|
| 154 |
-
"persian": "fa",
|
| 155 |
-
}
|
| 156 |
-
|
| 157 |
-
logger = logging.Logger("Xlsum_task")
|
| 158 |
-
LANGUAGE_TO_SUFFIX = {
|
| 159 |
-
"chinese_simplified": "zh-CN",
|
| 160 |
-
"french": "fr",
|
| 161 |
-
"portuguese": "pt",
|
| 162 |
-
"english": "en",
|
| 163 |
-
"arabic": "ar",
|
| 164 |
-
"hindi": "hi",
|
| 165 |
-
"indonesian": "id",
|
| 166 |
-
"amharic": "am",
|
| 167 |
-
"bengali": "bn",
|
| 168 |
-
"telugu": "te",
|
| 169 |
-
"burmese": "my",
|
| 170 |
-
"german": "de",
|
| 171 |
-
"greek": "el",
|
| 172 |
-
"tamil": "ta",
|
| 173 |
-
"assamese": "as",
|
| 174 |
-
"hindi": "hi",
|
| 175 |
-
"vietnamese": "vi",
|
| 176 |
-
"russian": "ru",
|
| 177 |
-
"telugu": "te",
|
| 178 |
-
"romanian": "ro",
|
| 179 |
-
"malayalam": "ml",
|
| 180 |
-
"persian": "fa",
|
| 181 |
-
}
|
| 182 |
-
|
| 183 |
-
PARAMS = NewType("PARAMS", Dict[str, Any])
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
def read_parameters(args_path) -> PARAMS:
|
| 187 |
-
with open(args_path) as f:
|
| 188 |
-
args = yaml.load(f, Loader=SafeLoader)
|
| 189 |
-
return args
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
def load_qa_dataset(dataset_name, lang, split, translate_test=False, limit=5):
|
| 193 |
-
if dataset_name == "indicqa":
|
| 194 |
-
if split != "train":
|
| 195 |
-
dataset = load_dataset(
|
| 196 |
-
"ai4bharat/IndicQA", f"indicqa.{INDICQA_LANG2CODES[lang]}"
|
| 197 |
-
)[split]
|
| 198 |
-
else:
|
| 199 |
-
dataset = load_dataset("squad_v2")[split]
|
| 200 |
-
elif dataset_name == "xquad":
|
| 201 |
-
if split != "train":
|
| 202 |
-
dataset = load_dataset("xquad", f"xquad.{XQUAD_LANG2CODES[lang]}")[
|
| 203 |
-
"validation"
|
| 204 |
-
]
|
| 205 |
-
else:
|
| 206 |
-
dataset = load_dataset("squad")[split]
|
| 207 |
-
elif dataset_name == "tydiqa":
|
| 208 |
-
dataset = load_dataset("tydiqa", "secondary_task")[split]
|
| 209 |
-
dataset = dataset.map(
|
| 210 |
-
lambda example: {"lang": TYDIQA_LANG2CODES[example["id"].split("-")[0]]}
|
| 211 |
-
)
|
| 212 |
-
dataset = dataset.filter(lambda example: example["lang"] == lang)
|
| 213 |
-
elif dataset_name == "mlqa":
|
| 214 |
-
if split == "train":
|
| 215 |
-
print("No Training Data for MLQA, switching to validation!")
|
| 216 |
-
split = "validation"
|
| 217 |
-
if translate_test:
|
| 218 |
-
dataset_name = f"mlqa-translate-test.{lang}"
|
| 219 |
-
else:
|
| 220 |
-
dataset_name = f"mlqa.{lang}.{lang}"
|
| 221 |
-
|
| 222 |
-
dataset = load_dataset("mlqa", dataset_name)[split]
|
| 223 |
-
|
| 224 |
-
else:
|
| 225 |
-
raise NotImplementedError()
|
| 226 |
-
return dataset.select(np.arange(limit))
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
def construct_prompt(
|
| 230 |
-
instruction: str,
|
| 231 |
-
test_example: dict,
|
| 232 |
-
ic_examples: List[dict],
|
| 233 |
-
zero_shot: bool,
|
| 234 |
-
lang: str,
|
| 235 |
-
config: Dict[Any, Any],
|
| 236 |
-
):
|
| 237 |
-
example_prompt = PromptTemplate(
|
| 238 |
-
input_variables=["context", "question", "answers"],
|
| 239 |
-
template="Context: {context}\nQuestion: {question}\n" "Answers: {answers}",
|
| 240 |
-
)
|
| 241 |
-
|
| 242 |
-
zero_shot_template = (
|
| 243 |
-
f"""{instruction}""" + "\n<Context>: {context} \n<Question>: {question} " ""
|
| 244 |
-
)
|
| 245 |
-
|
| 246 |
-
prompt = (
|
| 247 |
-
FewShotPromptTemplate(
|
| 248 |
-
examples=ic_examples,
|
| 249 |
-
prefix=instruction,
|
| 250 |
-
example_prompt=example_prompt,
|
| 251 |
-
suffix="<Context>: {context} \n<Question>: {question} \nAnswers: ?",
|
| 252 |
-
input_variables=["question", "context"],
|
| 253 |
-
)
|
| 254 |
-
if not zero_shot
|
| 255 |
-
else PromptTemplate(
|
| 256 |
-
input_variables=["question", "context"], template=zero_shot_template
|
| 257 |
-
)
|
| 258 |
-
)
|
| 259 |
-
|
| 260 |
-
label = test_example["answers"]
|
| 261 |
-
if config["input"] != lang:
|
| 262 |
-
test_example = _translate_example(
|
| 263 |
-
example=test_example, src_language=lang, target_language=config["input"]
|
| 264 |
-
)
|
| 265 |
-
|
| 266 |
-
return (
|
| 267 |
-
prompt.format(
|
| 268 |
-
question=test_example["question"], context=test_example["context"]
|
| 269 |
-
),
|
| 270 |
-
label,
|
| 271 |
-
)
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
def dump_metrics(
|
| 275 |
-
lang: str, config: Dict[str, str], f1: float, em: float, metric_logger_path: str
|
| 276 |
-
):
|
| 277 |
-
# Check if the metric logger file exists
|
| 278 |
-
file_exists = os.path.exists(metric_logger_path)
|
| 279 |
-
|
| 280 |
-
# Open the CSV file in append mode
|
| 281 |
-
with open(metric_logger_path, "a", newline="") as f:
|
| 282 |
-
csvwriter = csv.writer(f, delimiter=",")
|
| 283 |
-
|
| 284 |
-
# Write header row if the file is newly created
|
| 285 |
-
if not file_exists:
|
| 286 |
-
header = ["Language", "Prefix", "Input", "Context", "Output", "F1", "Em"]
|
| 287 |
-
csvwriter.writerow(header)
|
| 288 |
-
|
| 289 |
-
csvwriter.writerow(
|
| 290 |
-
[
|
| 291 |
-
lang,
|
| 292 |
-
config["prefix"],
|
| 293 |
-
config["input"],
|
| 294 |
-
config["context"][0],
|
| 295 |
-
config["output"],
|
| 296 |
-
f1,
|
| 297 |
-
em,
|
| 298 |
-
]
|
| 299 |
-
)
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
def dump_predictions(idx, response, label, response_logger_file):
|
| 303 |
-
obj = {"q_idx": idx, "prediction": response, "label": label}
|
| 304 |
-
with open(response_logger_file, "a") as f:
|
| 305 |
-
f.write(json.dumps(obj, ensure_ascii=False) + "\n")
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
| 309 |
-
translator = EasyGoogleTranslate(
|
| 310 |
-
source_language="en",
|
| 311 |
-
target_language=LANGUAGE_TO_SUFFIX[target_language],
|
| 312 |
-
timeout=50,
|
| 313 |
-
)
|
| 314 |
-
return translator.translate(basic_instruction)
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
def _translate_prediction_to_output_language(
|
| 318 |
-
prediction: str, prediction_language: str, output_language: str
|
| 319 |
-
) -> str:
|
| 320 |
-
translator = EasyGoogleTranslate(
|
| 321 |
-
source_language=LANGUAGE_TO_SUFFIX[prediction_language],
|
| 322 |
-
target_language=LANGUAGE_TO_SUFFIX[output_language],
|
| 323 |
-
timeout=10,
|
| 324 |
-
)
|
| 325 |
-
return translator.translate(prediction)
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
def create_instruction(lang: str, expected_output: str):
|
| 329 |
-
basic_instruction = (
|
| 330 |
-
"Answer to the <Question> below, based only to the given <Context>, Follow these instructions:\n"
|
| 331 |
-
"1. The answer should include only words from the given context\n"
|
| 332 |
-
"2. The answer must include up to 5 words\n"
|
| 333 |
-
"3. The answer Should be the shortest as possible\n"
|
| 334 |
-
f"4. The answer must be in {expected_output} only!, not another language!!!"
|
| 335 |
-
)
|
| 336 |
-
return (
|
| 337 |
-
basic_instruction
|
| 338 |
-
if lang == "english"
|
| 339 |
-
else _translate_instruction(basic_instruction, target_language=lang)
|
| 340 |
-
)
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
def _translate_example(
|
| 344 |
-
example: Dict[str, str], src_language: str, target_language: str
|
| 345 |
-
):
|
| 346 |
-
translator = EasyGoogleTranslate(
|
| 347 |
-
source_language=LANGUAGE_TO_SUFFIX[str(src_language).lower()],
|
| 348 |
-
target_language=LANGUAGE_TO_SUFFIX[str(target_language).lower()],
|
| 349 |
-
timeout=30,
|
| 350 |
-
)
|
| 351 |
-
|
| 352 |
-
return {
|
| 353 |
-
"question": translator.translate(example["question"]),
|
| 354 |
-
"context": translator.translate(example["context"][:2000])
|
| 355 |
-
+ translator.translate(example["context"][2000:4000])
|
| 356 |
-
+ translator.translate(example["context"][4000:6000]),
|
| 357 |
-
"answers": translator.translate(example["answers"][0]),
|
| 358 |
-
}
|
| 359 |
-
# except Exception as e:
|
| 360 |
-
# print(example["text"])
|
| 361 |
-
# print(example["summary"])
|
| 362 |
-
# print(e)
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
def choose_few_shot_examples(
|
| 366 |
-
train_dataset: Dataset,
|
| 367 |
-
few_shot_size: int,
|
| 368 |
-
context: List[str],
|
| 369 |
-
selection_criteria: str,
|
| 370 |
-
lang: str,
|
| 371 |
-
) -> List[Dict[str, Union[str, int]]]:
|
| 372 |
-
"""Selects few-shot examples from training datasets
|
| 373 |
-
|
| 374 |
-
Args:
|
| 375 |
-
train_dataset (Dataset): Training Dataset
|
| 376 |
-
few_shot_size (int): Number of few-shot examples
|
| 377 |
-
selection_criteria (few_shot_selection): How to select few-shot examples. Choices: [random, first_k]
|
| 378 |
-
|
| 379 |
-
Returns:
|
| 380 |
-
List[Dict[str, Union[str, int]]]: Selected examples
|
| 381 |
-
"""
|
| 382 |
-
selected_examples = []
|
| 383 |
-
|
| 384 |
-
example_idxs = []
|
| 385 |
-
if selection_criteria == "first_k":
|
| 386 |
-
example_idxs = list(range(few_shot_size))
|
| 387 |
-
elif selection_criteria == "random":
|
| 388 |
-
example_idxs = (
|
| 389 |
-
np.random.choice(len(train_dataset), size=few_shot_size, replace=True)
|
| 390 |
-
.astype(int)
|
| 391 |
-
.tolist()
|
| 392 |
-
)
|
| 393 |
-
|
| 394 |
-
ic_examples = [
|
| 395 |
-
{
|
| 396 |
-
"question": train_dataset[idx]["question"],
|
| 397 |
-
"context": train_dataset[idx]["context"],
|
| 398 |
-
"answers": train_dataset[idx]["answers"]["text"],
|
| 399 |
-
}
|
| 400 |
-
for idx in example_idxs
|
| 401 |
-
]
|
| 402 |
-
|
| 403 |
-
for idx, ic_language in enumerate(context):
|
| 404 |
-
(
|
| 405 |
-
selected_examples.append(ic_examples[idx])
|
| 406 |
-
if ic_language == lang
|
| 407 |
-
else (
|
| 408 |
-
selected_examples.append(
|
| 409 |
-
_translate_example(
|
| 410 |
-
example=ic_examples[idx],
|
| 411 |
-
src_language=lang,
|
| 412 |
-
target_language=ic_language,
|
| 413 |
-
)
|
| 414 |
-
)
|
| 415 |
-
)
|
| 416 |
-
)
|
| 417 |
-
|
| 418 |
-
return selected_examples
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
def normalize_answer(s):
|
| 422 |
-
"""Lower text and remove punctuation, articles and extra whitespace."""
|
| 423 |
-
|
| 424 |
-
def remove_articles(text):
|
| 425 |
-
return re.sub(r"\b(a|an|the)\b", " ", text)
|
| 426 |
-
|
| 427 |
-
def white_space_fix(text):
|
| 428 |
-
return " ".join(text.split())
|
| 429 |
-
|
| 430 |
-
def remove_punc(text):
|
| 431 |
-
exclude = set(PUNCT) # set(string.punctuation)
|
| 432 |
-
return "".join(ch for ch in text if ch not in exclude)
|
| 433 |
-
|
| 434 |
-
def lower(text):
|
| 435 |
-
return text.lower()
|
| 436 |
-
|
| 437 |
-
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
def process_test_example(
|
| 441 |
-
test_data, config_header, idx, test_example, config, zero_shot, lang, params
|
| 442 |
-
):
|
| 443 |
-
try:
|
| 444 |
-
# Your existing code for processing each test example
|
| 445 |
-
instruction = create_instruction(
|
| 446 |
-
lang=config["prefix"], expected_output=config["output"]
|
| 447 |
-
)
|
| 448 |
-
text_example = {
|
| 449 |
-
"question": test_example["question"],
|
| 450 |
-
"context": test_example["context"],
|
| 451 |
-
"answers": test_example["answers"]["text"],
|
| 452 |
-
}
|
| 453 |
-
|
| 454 |
-
ic_examples = []
|
| 455 |
-
if not zero_shot:
|
| 456 |
-
ic_examples = choose_few_shot_examples(
|
| 457 |
-
train_dataset=test_data,
|
| 458 |
-
few_shot_size=len(config["context"]),
|
| 459 |
-
context=config["context"],
|
| 460 |
-
selection_criteria="random",
|
| 461 |
-
lang=params["selected_language"],
|
| 462 |
-
)
|
| 463 |
-
|
| 464 |
-
prompt, label = construct_prompt(
|
| 465 |
-
instruction=instruction,
|
| 466 |
-
test_example=text_example,
|
| 467 |
-
ic_examples=ic_examples,
|
| 468 |
-
zero_shot=zero_shot,
|
| 469 |
-
lang=lang,
|
| 470 |
-
config=config,
|
| 471 |
-
)
|
| 472 |
-
|
| 473 |
-
pred = gpt3x_completion(prompt=prompt)
|
| 474 |
-
print(pred)
|
| 475 |
-
|
| 476 |
-
logger.info("Saving prediction to persistent volume")
|
| 477 |
-
os.makedirs(
|
| 478 |
-
f"{params['response_logger_root']}/{params['model']}/{lang}", exist_ok=True
|
| 479 |
-
)
|
| 480 |
-
dump_predictions(
|
| 481 |
-
idx=idx,
|
| 482 |
-
response=pred,
|
| 483 |
-
label=label,
|
| 484 |
-
response_logger_file=f"{params['response_logger_root']}/{params['model']}/{lang}/{config_header}.csv",
|
| 485 |
-
)
|
| 486 |
-
except Exception as e:
|
| 487 |
-
# Handle exceptions here
|
| 488 |
-
print(f"Error processing example {idx}: {e}")
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
def run_one_configuration(selected_language, config, zero_shot, dataset_name, limit=10):
|
| 492 |
-
test_data = load_qa_dataset(
|
| 493 |
-
dataset_name=dataset_name,
|
| 494 |
-
lang=selected_language,
|
| 495 |
-
split="validation" if dataset_name == "xquad" else "test",
|
| 496 |
-
limit=limit,
|
| 497 |
-
)
|
| 498 |
-
|
| 499 |
-
for idx, test_example in (pbar := tqdm(enumerate(test_data))):
|
| 500 |
-
try:
|
| 501 |
-
instruction = create_instruction(
|
| 502 |
-
lang=config["prefix"], expected_output=config["output"]
|
| 503 |
-
)
|
| 504 |
-
text_example = {
|
| 505 |
-
"question": test_example["question"],
|
| 506 |
-
"context": test_example["context"],
|
| 507 |
-
"answers": test_example["answers"]["text"],
|
| 508 |
-
}
|
| 509 |
-
|
| 510 |
-
ic_examples = []
|
| 511 |
-
if not zero_shot:
|
| 512 |
-
ic_examples = choose_few_shot_examples(
|
| 513 |
-
train_dataset=test_data,
|
| 514 |
-
few_shot_size=len(config["context"]),
|
| 515 |
-
context=config["context"],
|
| 516 |
-
selection_criteria="random",
|
| 517 |
-
lang=selected_language,
|
| 518 |
-
)
|
| 519 |
-
|
| 520 |
-
prompt, label = construct_prompt(
|
| 521 |
-
instruction=instruction,
|
| 522 |
-
test_example=text_example,
|
| 523 |
-
ic_examples=ic_examples,
|
| 524 |
-
zero_shot=zero_shot,
|
| 525 |
-
lang=selected_language,
|
| 526 |
-
config=config,
|
| 527 |
-
)
|
| 528 |
-
|
| 529 |
-
pred = gpt3x_completion(prompt=prompt)
|
| 530 |
-
|
| 531 |
-
return pred
|
| 532 |
-
|
| 533 |
-
except Exception as e:
|
| 534 |
-
print(f"Found an exception {e}, continue to the next example")
|
| 535 |
-
continue
|
| 536 |
-
|
| 537 |
|
| 538 |
QA = "QA"
|
| 539 |
SUMMARIZATION = "Summarization"
|
|
@@ -541,8 +22,16 @@ NLI = "NLI"
|
|
| 541 |
NER = "NER"
|
| 542 |
|
| 543 |
|
| 544 |
-
def construct_generic_prompt(
|
| 545 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 546 |
print(task)
|
| 547 |
if task == SUMMARIZATION:
|
| 548 |
prompt = summarization.construct_prompt(
|
|
@@ -588,30 +77,36 @@ def construct_generic_prompt(task, instruction, test_example, zero_shot, num_exa
|
|
| 588 |
|
| 589 |
def _get_language_type(language: str):
|
| 590 |
df = pd.read_csv("utils/languages_by_word_count.csv")
|
| 591 |
-
number_of_words = df[df[
|
| 592 |
print(number_of_words)
|
| 593 |
return LanguageType.Low if number_of_words < 150276400 else LanguageType.High
|
| 594 |
|
| 595 |
|
| 596 |
class Config:
|
| 597 |
-
def __init__(
|
|
|
|
|
|
|
| 598 |
self.prefix = prefix
|
| 599 |
self.context = context
|
| 600 |
self.examples = examples
|
| 601 |
self.output = output
|
| 602 |
|
| 603 |
def set(self, prefix=None, context=None, examples=None, output=None):
|
| 604 |
-
if prefix:
|
| 605 |
-
|
| 606 |
-
if
|
| 607 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 608 |
|
| 609 |
def to_dict(self):
|
| 610 |
return {
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
}
|
| 616 |
|
| 617 |
|
|
@@ -622,22 +117,22 @@ def recommend_config(task, lang, model_type):
|
|
| 622 |
if model_type == ModelType.English.value:
|
| 623 |
config.set(prefix=lang, context=lang, examples=lang, output=lang)
|
| 624 |
else:
|
| 625 |
-
config.set(prefix=
|
| 626 |
if task == NER:
|
| 627 |
if model_type == ModelType.English.value:
|
| 628 |
config.set(prefix=lang, context=lang, examples=lang, output=lang)
|
| 629 |
elif language_type == LanguageType.High:
|
| 630 |
-
config.set(prefix=
|
| 631 |
else:
|
| 632 |
-
config.set(prefix=
|
| 633 |
if task == NLI:
|
| 634 |
if model_type == ModelType.English.value:
|
| 635 |
config.set(prefix=lang, context=lang, examples=lang, output=lang)
|
| 636 |
elif language_type == LanguageType.High:
|
| 637 |
-
config.set(prefix=
|
| 638 |
else:
|
| 639 |
-
config.set(prefix=
|
| 640 |
if task == SUMMARIZATION:
|
| 641 |
-
config.set(context=
|
| 642 |
print(config.to_dict())
|
| 643 |
return config.to_dict()
|
|
|
|
|
|
|
|
|
|
| 1 |
import enum
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
|
|
|
|
|
|
| 3 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
from tasks import ner, nli, qa, summarization
|
| 6 |
|
| 7 |
|
|
|
|
|
|
|
| 8 |
class LanguageType(enum.Enum):
|
| 9 |
Low = "Low"
|
| 10 |
High = "High"
|
|
|
|
| 15 |
Multilingual = "Multilingual"
|
| 16 |
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
QA = "QA"
|
| 20 |
SUMMARIZATION = "Summarization"
|
|
|
|
| 22 |
NER = "NER"
|
| 23 |
|
| 24 |
|
| 25 |
+
def construct_generic_prompt(
|
| 26 |
+
task,
|
| 27 |
+
instruction,
|
| 28 |
+
test_example,
|
| 29 |
+
zero_shot,
|
| 30 |
+
num_examples,
|
| 31 |
+
selected_language,
|
| 32 |
+
dataset,
|
| 33 |
+
config,
|
| 34 |
+
):
|
| 35 |
print(task)
|
| 36 |
if task == SUMMARIZATION:
|
| 37 |
prompt = summarization.construct_prompt(
|
|
|
|
| 77 |
|
| 78 |
def _get_language_type(language: str):
|
| 79 |
df = pd.read_csv("utils/languages_by_word_count.csv")
|
| 80 |
+
number_of_words = df[df["Language"] == language]["number of words"].iloc[0]
|
| 81 |
print(number_of_words)
|
| 82 |
return LanguageType.Low if number_of_words < 150276400 else LanguageType.High
|
| 83 |
|
| 84 |
|
| 85 |
class Config:
|
| 86 |
+
def __init__(
|
| 87 |
+
self, prefix="source", context="source", examples="source", output="source"
|
| 88 |
+
):
|
| 89 |
self.prefix = prefix
|
| 90 |
self.context = context
|
| 91 |
self.examples = examples
|
| 92 |
self.output = output
|
| 93 |
|
| 94 |
def set(self, prefix=None, context=None, examples=None, output=None):
|
| 95 |
+
if prefix:
|
| 96 |
+
self.prefix = prefix
|
| 97 |
+
if context:
|
| 98 |
+
self.context = context
|
| 99 |
+
if examples:
|
| 100 |
+
self.examples = examples
|
| 101 |
+
if output:
|
| 102 |
+
self.output = output
|
| 103 |
|
| 104 |
def to_dict(self):
|
| 105 |
return {
|
| 106 |
+
"instruction": self.prefix,
|
| 107 |
+
"context": self.context,
|
| 108 |
+
"examples": self.examples,
|
| 109 |
+
"output": self.output,
|
| 110 |
}
|
| 111 |
|
| 112 |
|
|
|
|
| 117 |
if model_type == ModelType.English.value:
|
| 118 |
config.set(prefix=lang, context=lang, examples=lang, output=lang)
|
| 119 |
else:
|
| 120 |
+
config.set(prefix="English", context=lang, examples=lang, output=lang)
|
| 121 |
if task == NER:
|
| 122 |
if model_type == ModelType.English.value:
|
| 123 |
config.set(prefix=lang, context=lang, examples=lang, output=lang)
|
| 124 |
elif language_type == LanguageType.High:
|
| 125 |
+
config.set(prefix="English", context=lang, examples=lang, output=lang)
|
| 126 |
else:
|
| 127 |
+
config.set(prefix="English", context=lang, examples=lang, output="English")
|
| 128 |
if task == NLI:
|
| 129 |
if model_type == ModelType.English.value:
|
| 130 |
config.set(prefix=lang, context=lang, examples=lang, output=lang)
|
| 131 |
elif language_type == LanguageType.High:
|
| 132 |
+
config.set(prefix="English", context=lang, examples="English")
|
| 133 |
else:
|
| 134 |
+
config.set(prefix="English", context="English", examples="English")
|
| 135 |
if task == SUMMARIZATION:
|
| 136 |
+
config.set(context="English")
|
| 137 |
print(config.to_dict())
|
| 138 |
return config.to_dict()
|
tasks/ner.py
CHANGED
|
@@ -1,16 +1,12 @@
|
|
| 1 |
-
from typing import
|
| 2 |
|
| 3 |
import numpy as np
|
| 4 |
-
from datasets import
|
| 5 |
from easygoogletranslate import EasyGoogleTranslate
|
| 6 |
-
from langchain.prompts import
|
| 7 |
|
| 8 |
LANGAUGE_TO_PREFIX = {
|
| 9 |
-
|
| 10 |
"chinese_simplified": "zh-CN",
|
| 11 |
-
"french": "fr",
|
| 12 |
-
"portuguese": "pt",
|
| 13 |
-
"english": "en",
|
| 14 |
"arabic": "ar",
|
| 15 |
"hindi": "hi",
|
| 16 |
"indonesian": "id",
|
|
@@ -31,7 +27,6 @@ LANGAUGE_TO_PREFIX = {
|
|
| 31 |
"greek": "el",
|
| 32 |
"tamil": "ta",
|
| 33 |
"assamese": "as",
|
| 34 |
-
"vietnamese": "vi",
|
| 35 |
"russian": "ru",
|
| 36 |
"romanian": "ro",
|
| 37 |
"malayalam": "ml",
|
|
@@ -39,16 +34,13 @@ LANGAUGE_TO_PREFIX = {
|
|
| 39 |
"bulgarian": "bg",
|
| 40 |
"thai": "th",
|
| 41 |
"urdu": "ur",
|
| 42 |
-
"italian": "it",
|
| 43 |
"polish": "pl",
|
| 44 |
"dutch": "nl",
|
| 45 |
-
"swedish": "sv",
|
| 46 |
"danish": "da",
|
| 47 |
"norwegian": "no",
|
| 48 |
"finnish": "fi",
|
| 49 |
"hungarian": "hu",
|
| 50 |
"czech": "cs",
|
| 51 |
-
"slovak": "sk",
|
| 52 |
"ukrainian": "uk",
|
| 53 |
"bambara": "bam",
|
| 54 |
"ewe": "ewe",
|
|
@@ -67,10 +59,9 @@ LANGAUGE_TO_PREFIX = {
|
|
| 67 |
"portuguese": "pt",
|
| 68 |
"chinese": "zh",
|
| 69 |
"english": "en",
|
| 70 |
-
"french": "fr"
|
| 71 |
}
|
| 72 |
|
| 73 |
-
|
| 74 |
def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
| 75 |
translator = EasyGoogleTranslate(
|
| 76 |
source_language="en",
|
|
@@ -104,7 +95,7 @@ def load_wikiann_dataset(lang, split, limit):
|
|
| 104 |
|
| 105 |
|
| 106 |
def _translate_example(
|
| 107 |
-
|
| 108 |
):
|
| 109 |
translator = EasyGoogleTranslate(
|
| 110 |
source_language=LANGAUGE_TO_PREFIX[src_language],
|
|
@@ -114,16 +105,16 @@ def _translate_example(
|
|
| 114 |
|
| 115 |
return {
|
| 116 |
"tokens": translator.translate(str(example["tokens"])),
|
| 117 |
-
"ner_tags": translator.translate(str(example["ner_tags"]))
|
| 118 |
}
|
| 119 |
|
| 120 |
|
| 121 |
def choose_few_shot_examples(
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
) -> List[Dict[str, Union[str, int]]]:
|
| 128 |
"""Selects few-shot examples from training datasets
|
| 129 |
|
|
@@ -150,10 +141,7 @@ def choose_few_shot_examples(
|
|
| 150 |
ic_examples = [train_dataset[idx] for idx in example_idxs]
|
| 151 |
|
| 152 |
ic_examples = [
|
| 153 |
-
{
|
| 154 |
-
"tokens": ' '.join(example['tokens']),
|
| 155 |
-
"ner_tags": example['spans']
|
| 156 |
-
}
|
| 157 |
for example in ic_examples
|
| 158 |
]
|
| 159 |
|
|
@@ -185,7 +173,7 @@ def construct_prompt(
|
|
| 185 |
config: Dict[str, str],
|
| 186 |
):
|
| 187 |
if not instruction:
|
| 188 |
-
instruction = create_instruction(lang, config[
|
| 189 |
|
| 190 |
example_prompt = PromptTemplate(
|
| 191 |
input_variables=["tokens", "ner_tags"],
|
|
@@ -197,8 +185,9 @@ def construct_prompt(
|
|
| 197 |
try:
|
| 198 |
test_data = load_wikiann_dataset(lang=lang, split="test", limit=500)
|
| 199 |
except Exception as e:
|
| 200 |
-
raise KeyError(
|
| 201 |
-
|
|
|
|
| 202 |
|
| 203 |
ic_examples = []
|
| 204 |
if not zero_shot:
|
|
|
|
| 1 |
+
from typing import Dict, List, Union
|
| 2 |
|
| 3 |
import numpy as np
|
| 4 |
+
from datasets import Dataset, load_dataset
|
| 5 |
from easygoogletranslate import EasyGoogleTranslate
|
| 6 |
+
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
|
| 7 |
|
| 8 |
LANGAUGE_TO_PREFIX = {
|
|
|
|
| 9 |
"chinese_simplified": "zh-CN",
|
|
|
|
|
|
|
|
|
|
| 10 |
"arabic": "ar",
|
| 11 |
"hindi": "hi",
|
| 12 |
"indonesian": "id",
|
|
|
|
| 27 |
"greek": "el",
|
| 28 |
"tamil": "ta",
|
| 29 |
"assamese": "as",
|
|
|
|
| 30 |
"russian": "ru",
|
| 31 |
"romanian": "ro",
|
| 32 |
"malayalam": "ml",
|
|
|
|
| 34 |
"bulgarian": "bg",
|
| 35 |
"thai": "th",
|
| 36 |
"urdu": "ur",
|
|
|
|
| 37 |
"polish": "pl",
|
| 38 |
"dutch": "nl",
|
|
|
|
| 39 |
"danish": "da",
|
| 40 |
"norwegian": "no",
|
| 41 |
"finnish": "fi",
|
| 42 |
"hungarian": "hu",
|
| 43 |
"czech": "cs",
|
|
|
|
| 44 |
"ukrainian": "uk",
|
| 45 |
"bambara": "bam",
|
| 46 |
"ewe": "ewe",
|
|
|
|
| 59 |
"portuguese": "pt",
|
| 60 |
"chinese": "zh",
|
| 61 |
"english": "en",
|
| 62 |
+
"french": "fr",
|
| 63 |
}
|
| 64 |
|
|
|
|
| 65 |
def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
| 66 |
translator = EasyGoogleTranslate(
|
| 67 |
source_language="en",
|
|
|
|
| 95 |
|
| 96 |
|
| 97 |
def _translate_example(
|
| 98 |
+
example: Dict[str, str], src_language: str, target_language: str
|
| 99 |
):
|
| 100 |
translator = EasyGoogleTranslate(
|
| 101 |
source_language=LANGAUGE_TO_PREFIX[src_language],
|
|
|
|
| 105 |
|
| 106 |
return {
|
| 107 |
"tokens": translator.translate(str(example["tokens"])),
|
| 108 |
+
"ner_tags": translator.translate(str(example["ner_tags"])),
|
| 109 |
}
|
| 110 |
|
| 111 |
|
| 112 |
def choose_few_shot_examples(
|
| 113 |
+
train_dataset: Dataset,
|
| 114 |
+
few_shot_size: int,
|
| 115 |
+
context: List[str],
|
| 116 |
+
selection_criteria: str,
|
| 117 |
+
lang: str,
|
| 118 |
) -> List[Dict[str, Union[str, int]]]:
|
| 119 |
"""Selects few-shot examples from training datasets
|
| 120 |
|
|
|
|
| 141 |
ic_examples = [train_dataset[idx] for idx in example_idxs]
|
| 142 |
|
| 143 |
ic_examples = [
|
| 144 |
+
{"tokens": " ".join(example["tokens"]), "ner_tags": example["spans"]}
|
|
|
|
|
|
|
|
|
|
| 145 |
for example in ic_examples
|
| 146 |
]
|
| 147 |
|
|
|
|
| 173 |
config: Dict[str, str],
|
| 174 |
):
|
| 175 |
if not instruction:
|
| 176 |
+
instruction = create_instruction(lang, config["prefix"], config["output"])
|
| 177 |
|
| 178 |
example_prompt = PromptTemplate(
|
| 179 |
input_variables=["tokens", "ner_tags"],
|
|
|
|
| 185 |
try:
|
| 186 |
test_data = load_wikiann_dataset(lang=lang, split="test", limit=500)
|
| 187 |
except Exception as e:
|
| 188 |
+
raise KeyError(
|
| 189 |
+
f"{lang} is not supported in 'wikiAnn' dataset, choose supported language in few-shot"
|
| 190 |
+
)
|
| 191 |
|
| 192 |
ic_examples = []
|
| 193 |
if not zero_shot:
|
tasks/nli.py
CHANGED
|
@@ -32,9 +32,7 @@ LANGUAGE_TO_SUFFIX = {
|
|
| 32 |
"spanish": "es",
|
| 33 |
"chinese": "zh",
|
| 34 |
"greek": "el",
|
| 35 |
-
"german": "de"
|
| 36 |
-
|
| 37 |
-
|
| 38 |
}
|
| 39 |
|
| 40 |
NUMBER_TO_TAG = {0: "entailment", 1: "neutral", 2: "contradiction"}
|
|
@@ -42,9 +40,6 @@ NUMBER_TO_TAG = {0: "entailment", 1: "neutral", 2: "contradiction"}
|
|
| 42 |
PARAMS = NewType("PARAMS", Dict[str, Any])
|
| 43 |
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
def read_parameters(args_path) -> PARAMS:
|
| 49 |
with open(args_path) as f:
|
| 50 |
args = yaml.load(f, Loader=SafeLoader)
|
|
@@ -278,7 +273,7 @@ def create_instruction(lang: str):
|
|
| 278 |
)
|
| 279 |
|
| 280 |
|
| 281 |
-
def run_one_configuration(params: Optional[PARAMS] = None, zero: bool= False):
|
| 282 |
if not params:
|
| 283 |
params = read_parameters("../../parameters.yaml")
|
| 284 |
|
|
@@ -320,6 +315,7 @@ def run_one_configuration(params: Optional[PARAMS] = None, zero: bool= False):
|
|
| 320 |
pool.close()
|
| 321 |
pool.join()
|
| 322 |
|
|
|
|
| 323 |
def process_test_example(
|
| 324 |
test_data, config_header, idx, test_example, config, zero_shot, lang, params
|
| 325 |
):
|
|
@@ -348,7 +344,9 @@ def process_test_example(
|
|
| 348 |
zero_shot=zero_shot,
|
| 349 |
)
|
| 350 |
|
| 351 |
-
pred = get_prediction(
|
|
|
|
|
|
|
| 352 |
print(pred)
|
| 353 |
|
| 354 |
os.makedirs(
|
|
@@ -367,13 +365,13 @@ def process_test_example(
|
|
| 367 |
|
| 368 |
|
| 369 |
def construct_prompt(
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
):
|
| 378 |
if not instruction:
|
| 379 |
print(lang)
|
|
@@ -385,13 +383,15 @@ def construct_prompt(
|
|
| 385 |
)
|
| 386 |
|
| 387 |
zero_shot_template = (
|
| 388 |
-
|
| 389 |
)
|
| 390 |
if not zero_shot:
|
| 391 |
try:
|
| 392 |
test_data = load_xnli_dataset(dataset_name, lang, split="test", limit=100)
|
| 393 |
except KeyError as e:
|
| 394 |
-
raise KeyError(
|
|
|
|
|
|
|
| 395 |
|
| 396 |
ic_examples = []
|
| 397 |
if not zero_shot:
|
|
@@ -425,4 +425,5 @@ def construct_prompt(
|
|
| 425 |
)
|
| 426 |
|
| 427 |
return prompt.format(
|
| 428 |
-
hypothesis=test_example["hypothesis"], premise=test_example["premise"]
|
|
|
|
|
|
| 32 |
"spanish": "es",
|
| 33 |
"chinese": "zh",
|
| 34 |
"greek": "el",
|
| 35 |
+
"german": "de",
|
|
|
|
|
|
|
| 36 |
}
|
| 37 |
|
| 38 |
NUMBER_TO_TAG = {0: "entailment", 1: "neutral", 2: "contradiction"}
|
|
|
|
| 40 |
PARAMS = NewType("PARAMS", Dict[str, Any])
|
| 41 |
|
| 42 |
|
|
|
|
|
|
|
|
|
|
| 43 |
def read_parameters(args_path) -> PARAMS:
|
| 44 |
with open(args_path) as f:
|
| 45 |
args = yaml.load(f, Loader=SafeLoader)
|
|
|
|
| 273 |
)
|
| 274 |
|
| 275 |
|
| 276 |
+
def run_one_configuration(params: Optional[PARAMS] = None, zero: bool = False):
|
| 277 |
if not params:
|
| 278 |
params = read_parameters("../../parameters.yaml")
|
| 279 |
|
|
|
|
| 315 |
pool.close()
|
| 316 |
pool.join()
|
| 317 |
|
| 318 |
+
|
| 319 |
def process_test_example(
|
| 320 |
test_data, config_header, idx, test_example, config, zero_shot, lang, params
|
| 321 |
):
|
|
|
|
| 344 |
zero_shot=zero_shot,
|
| 345 |
)
|
| 346 |
|
| 347 |
+
pred = get_prediction(
|
| 348 |
+
prompt=prompt, endpoint_id=7327255438662041600, project_id=16514800572
|
| 349 |
+
)
|
| 350 |
print(pred)
|
| 351 |
|
| 352 |
os.makedirs(
|
|
|
|
| 365 |
|
| 366 |
|
| 367 |
def construct_prompt(
|
| 368 |
+
instruction: str,
|
| 369 |
+
test_example: dict,
|
| 370 |
+
zero_shot: bool,
|
| 371 |
+
num_examples: int,
|
| 372 |
+
lang: str,
|
| 373 |
+
config: Dict[str, str],
|
| 374 |
+
dataset_name: str = "xnli",
|
| 375 |
):
|
| 376 |
if not instruction:
|
| 377 |
print(lang)
|
|
|
|
| 383 |
)
|
| 384 |
|
| 385 |
zero_shot_template = (
|
| 386 |
+
f"""{instruction}""" + "\n Hypothesis: {hypothesis} + \n Premise: {premise}" ""
|
| 387 |
)
|
| 388 |
if not zero_shot:
|
| 389 |
try:
|
| 390 |
test_data = load_xnli_dataset(dataset_name, lang, split="test", limit=100)
|
| 391 |
except KeyError as e:
|
| 392 |
+
raise KeyError(
|
| 393 |
+
f"{lang} is not supported in {dataset_name} dataset, choose supported language in few-shot"
|
| 394 |
+
)
|
| 395 |
|
| 396 |
ic_examples = []
|
| 397 |
if not zero_shot:
|
|
|
|
| 425 |
)
|
| 426 |
|
| 427 |
return prompt.format(
|
| 428 |
+
hypothesis=test_example["hypothesis"], premise=test_example["premise"]
|
| 429 |
+
)
|
tasks/qa.py
CHANGED
|
@@ -10,8 +10,6 @@ import unicodedata
|
|
| 10 |
from typing import Any, Dict, List, NewType, Optional, Union
|
| 11 |
|
| 12 |
import numpy as np
|
| 13 |
-
import openai
|
| 14 |
-
import requests
|
| 15 |
import yaml
|
| 16 |
from datasets import Dataset, load_dataset
|
| 17 |
from easygoogletranslate import EasyGoogleTranslate
|
|
@@ -20,52 +18,6 @@ from langchain.prompts import FewShotPromptTemplate, PromptTemplate
|
|
| 20 |
from tqdm import tqdm
|
| 21 |
from yaml.loader import SafeLoader
|
| 22 |
|
| 23 |
-
|
| 24 |
-
# from models.model_completion import gpt3x_completion, gemini_completion
|
| 25 |
-
|
| 26 |
-
def gemini_completion(prompt):
|
| 27 |
-
# Define the endpoint URL
|
| 28 |
-
genai.configure(api_key="")
|
| 29 |
-
model = genai.GenerativeModel("models/gemini-1.0-pro-latest")
|
| 30 |
-
return model.generate_content(prompt).text
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
def get_entities_gpt3_long(prompt):
|
| 35 |
-
response = openai.ChatCompletion.create(
|
| 36 |
-
engine="chatgpt", temperature=0, messages=[{"role": "user", "content": prompt}]
|
| 37 |
-
)
|
| 38 |
-
return response["choices"][0]["message"]["content"]
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
def gpt3x_completion(
|
| 42 |
-
prompt: Union[str, List[Dict[str, str]]],
|
| 43 |
-
model: str = "chatgpt",
|
| 44 |
-
# run_details: Any = {},
|
| 45 |
-
# num_evals_per_sec: int = 2,
|
| 46 |
-
# **model_params,
|
| 47 |
-
) -> str:
|
| 48 |
-
import openai
|
| 49 |
-
def get_entities_chatGPT(final_prompt):
|
| 50 |
-
response = openai.ChatCompletion.create(
|
| 51 |
-
engine="gpt35-16k",
|
| 52 |
-
temperature=0,
|
| 53 |
-
messages=[
|
| 54 |
-
{"role": "user", "content": final_prompt}
|
| 55 |
-
]
|
| 56 |
-
)
|
| 57 |
-
return response['choices'][0]['message']['content']
|
| 58 |
-
|
| 59 |
-
return get_entities_chatGPT(final_prompt=prompt)
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
def mt0_completion(prompt):
|
| 63 |
-
inputs = tokenizer.encode(prompt, return_tensors="pt").to("cuda")
|
| 64 |
-
outputs = model.generate(inputs)
|
| 65 |
-
return tokenizer.decode(outputs[0])
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
XQUAD_LANG2CODES = {
|
| 70 |
"bengali": "bn",
|
| 71 |
"korean": "ko",
|
|
@@ -164,7 +116,7 @@ LANGUAGE_TO_SUFFIX = {
|
|
| 164 |
"hungarian": "hu",
|
| 165 |
"czech": "cs",
|
| 166 |
"slovak": "sk",
|
| 167 |
-
"ukrainian": "uk"
|
| 168 |
}
|
| 169 |
|
| 170 |
|
|
@@ -215,20 +167,21 @@ def load_qa_dataset(dataset_name, lang, split, translate_test=False, limit=5):
|
|
| 215 |
|
| 216 |
|
| 217 |
def construct_prompt(
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
):
|
| 225 |
example_prompt = PromptTemplate(
|
| 226 |
input_variables=["context", "question", "answers"],
|
| 227 |
-
template="Context: {context} \n Question: {question} \n "
|
|
|
|
| 228 |
)
|
| 229 |
|
| 230 |
zero_shot_template = (
|
| 231 |
-
|
| 232 |
)
|
| 233 |
|
| 234 |
prompt = (
|
|
@@ -260,7 +213,7 @@ def construct_prompt(
|
|
| 260 |
|
| 261 |
|
| 262 |
def dump_metrics(
|
| 263 |
-
|
| 264 |
):
|
| 265 |
# Check if the metric logger file exists
|
| 266 |
file_exists = os.path.exists(metric_logger_path)
|
|
@@ -303,7 +256,7 @@ def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
|
| 303 |
|
| 304 |
|
| 305 |
def _translate_prediction_to_output_language(
|
| 306 |
-
|
| 307 |
) -> str:
|
| 308 |
translator = EasyGoogleTranslate(
|
| 309 |
source_language=LANGUAGE_TO_SUFFIX[prediction_language],
|
|
@@ -329,7 +282,7 @@ def create_instruction(lang: str, instruction_language: str, expected_output):
|
|
| 329 |
|
| 330 |
|
| 331 |
def _translate_example(
|
| 332 |
-
|
| 333 |
):
|
| 334 |
translator = EasyGoogleTranslate(
|
| 335 |
source_language=LANGUAGE_TO_SUFFIX[src_language],
|
|
@@ -340,19 +293,20 @@ def _translate_example(
|
|
| 340 |
return {
|
| 341 |
"question": translator.translate(example["question"]),
|
| 342 |
"context": translator.translate(example["context"][:2000])
|
| 343 |
-
|
| 344 |
-
|
| 345 |
"answers": "",
|
| 346 |
}
|
| 347 |
except Exception as e:
|
| 348 |
pass
|
| 349 |
|
|
|
|
| 350 |
def choose_few_shot_examples(
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
) -> List[Dict[str, Union[str, int]]]:
|
| 357 |
"""Selects few-shot examples from training datasets
|
| 358 |
|
|
@@ -423,7 +377,7 @@ def normalize_answer(s):
|
|
| 423 |
|
| 424 |
|
| 425 |
def process_test_example(
|
| 426 |
-
|
| 427 |
):
|
| 428 |
try:
|
| 429 |
# Your existing code for processing each test example
|
|
@@ -456,7 +410,9 @@ def process_test_example(
|
|
| 456 |
)
|
| 457 |
|
| 458 |
print(len(prompt))
|
| 459 |
-
pred = get_prediction(
|
|
|
|
|
|
|
| 460 |
# pred = mixtral_completion(prompt)
|
| 461 |
print(pred)
|
| 462 |
|
|
@@ -551,10 +507,10 @@ def run_one_configuration(params: Optional[PARAMS] = None):
|
|
| 551 |
response=pred,
|
| 552 |
label=label,
|
| 553 |
response_logger_file=f"{params['response_logger_root']}"
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
)
|
| 559 |
|
| 560 |
except Exception as e:
|
|
@@ -572,7 +528,6 @@ def run_one_configuration(params: Optional[PARAMS] = None):
|
|
| 572 |
)
|
| 573 |
|
| 574 |
|
| 575 |
-
|
| 576 |
def run_one_configuration_paralle(params: Optional[PARAMS] = None, zero: bool = False):
|
| 577 |
if not params:
|
| 578 |
params = read_parameters("../../parameters.yaml")
|
|
@@ -624,7 +579,6 @@ def run_one_configuration_paralle(params: Optional[PARAMS] = None, zero: bool =
|
|
| 624 |
pool.join()
|
| 625 |
|
| 626 |
|
| 627 |
-
|
| 628 |
def construct_prompt(
|
| 629 |
instruction: str,
|
| 630 |
test_example: dict,
|
|
@@ -632,10 +586,10 @@ def construct_prompt(
|
|
| 632 |
num_examples: int,
|
| 633 |
lang: str,
|
| 634 |
config: Dict[str, str],
|
| 635 |
-
dataset_name: str =
|
| 636 |
):
|
| 637 |
if not instruction:
|
| 638 |
-
instruction = create_instruction(lang, config[
|
| 639 |
|
| 640 |
example_prompt = PromptTemplate(
|
| 641 |
input_variables=["context", "question", "answers"],
|
|
@@ -643,15 +597,16 @@ def construct_prompt(
|
|
| 643 |
)
|
| 644 |
|
| 645 |
zero_shot_template = (
|
| 646 |
-
|
| 647 |
)
|
| 648 |
if not zero_shot:
|
| 649 |
try:
|
| 650 |
-
test_data = load_qa_dataset(
|
|
|
|
|
|
|
| 651 |
except Exception as e:
|
| 652 |
raise KeyError(f"{lang} is not supported in {dataset_name}")
|
| 653 |
|
| 654 |
-
|
| 655 |
ic_examples = []
|
| 656 |
if not zero_shot:
|
| 657 |
|
|
@@ -677,12 +632,12 @@ def construct_prompt(
|
|
| 677 |
)
|
| 678 |
)
|
| 679 |
print("lang", lang)
|
| 680 |
-
print(config["input"]
|
| 681 |
if config["input"] != lang:
|
| 682 |
test_example = _translate_example(
|
| 683 |
example=test_example, src_language=lang, target_language=config["input"]
|
| 684 |
)
|
| 685 |
|
| 686 |
return prompt.format(
|
| 687 |
-
|
| 688 |
-
|
|
|
|
| 10 |
from typing import Any, Dict, List, NewType, Optional, Union
|
| 11 |
|
| 12 |
import numpy as np
|
|
|
|
|
|
|
| 13 |
import yaml
|
| 14 |
from datasets import Dataset, load_dataset
|
| 15 |
from easygoogletranslate import EasyGoogleTranslate
|
|
|
|
| 18 |
from tqdm import tqdm
|
| 19 |
from yaml.loader import SafeLoader
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
XQUAD_LANG2CODES = {
|
| 22 |
"bengali": "bn",
|
| 23 |
"korean": "ko",
|
|
|
|
| 116 |
"hungarian": "hu",
|
| 117 |
"czech": "cs",
|
| 118 |
"slovak": "sk",
|
| 119 |
+
"ukrainian": "uk",
|
| 120 |
}
|
| 121 |
|
| 122 |
|
|
|
|
| 167 |
|
| 168 |
|
| 169 |
def construct_prompt(
|
| 170 |
+
instruction: str,
|
| 171 |
+
test_example: dict,
|
| 172 |
+
ic_examples: List[dict],
|
| 173 |
+
zero_shot: bool,
|
| 174 |
+
lang: str,
|
| 175 |
+
config: Any,
|
| 176 |
):
|
| 177 |
example_prompt = PromptTemplate(
|
| 178 |
input_variables=["context", "question", "answers"],
|
| 179 |
+
template="Context: {context} \n Question: {question} \n "
|
| 180 |
+
"Answers: {answers}",
|
| 181 |
)
|
| 182 |
|
| 183 |
zero_shot_template = (
|
| 184 |
+
f"""{instruction}""" + " \n <Context>: {context} \n <Question>: {question} " ""
|
| 185 |
)
|
| 186 |
|
| 187 |
prompt = (
|
|
|
|
| 213 |
|
| 214 |
|
| 215 |
def dump_metrics(
|
| 216 |
+
lang: str, config: Dict[str, str], f1: float, em: float, metric_logger_path: str
|
| 217 |
):
|
| 218 |
# Check if the metric logger file exists
|
| 219 |
file_exists = os.path.exists(metric_logger_path)
|
|
|
|
| 256 |
|
| 257 |
|
| 258 |
def _translate_prediction_to_output_language(
|
| 259 |
+
prediction: str, prediction_language: str, output_language: str
|
| 260 |
) -> str:
|
| 261 |
translator = EasyGoogleTranslate(
|
| 262 |
source_language=LANGUAGE_TO_SUFFIX[prediction_language],
|
|
|
|
| 282 |
|
| 283 |
|
| 284 |
def _translate_example(
|
| 285 |
+
example: Dict[str, str], src_language: str, target_language: str
|
| 286 |
):
|
| 287 |
translator = EasyGoogleTranslate(
|
| 288 |
source_language=LANGUAGE_TO_SUFFIX[src_language],
|
|
|
|
| 293 |
return {
|
| 294 |
"question": translator.translate(example["question"]),
|
| 295 |
"context": translator.translate(example["context"][:2000])
|
| 296 |
+
+ translator.translate(example["context"][2000:4000])
|
| 297 |
+
+ translator.translate(example["context"][4000:6000]),
|
| 298 |
"answers": "",
|
| 299 |
}
|
| 300 |
except Exception as e:
|
| 301 |
pass
|
| 302 |
|
| 303 |
+
|
| 304 |
def choose_few_shot_examples(
|
| 305 |
+
train_dataset: Dataset,
|
| 306 |
+
few_shot_size: int,
|
| 307 |
+
context: List[str],
|
| 308 |
+
selection_criteria: str,
|
| 309 |
+
lang: str,
|
| 310 |
) -> List[Dict[str, Union[str, int]]]:
|
| 311 |
"""Selects few-shot examples from training datasets
|
| 312 |
|
|
|
|
| 377 |
|
| 378 |
|
| 379 |
def process_test_example(
|
| 380 |
+
test_data, config_header, idx, test_example, config, zero_shot, lang, params
|
| 381 |
):
|
| 382 |
try:
|
| 383 |
# Your existing code for processing each test example
|
|
|
|
| 410 |
)
|
| 411 |
|
| 412 |
print(len(prompt))
|
| 413 |
+
pred = get_prediction(
|
| 414 |
+
prompt=prompt, endpoint_id=7327255438662041600, project_id=16514800572
|
| 415 |
+
)
|
| 416 |
# pred = mixtral_completion(prompt)
|
| 417 |
print(pred)
|
| 418 |
|
|
|
|
| 507 |
response=pred,
|
| 508 |
label=label,
|
| 509 |
response_logger_file=f"{params['response_logger_root']}"
|
| 510 |
+
+ f"/{params['model']}"
|
| 511 |
+
+ f"/{lang}/"
|
| 512 |
+
+ config_header
|
| 513 |
+
+ ".csv",
|
| 514 |
)
|
| 515 |
|
| 516 |
except Exception as e:
|
|
|
|
| 528 |
)
|
| 529 |
|
| 530 |
|
|
|
|
| 531 |
def run_one_configuration_paralle(params: Optional[PARAMS] = None, zero: bool = False):
|
| 532 |
if not params:
|
| 533 |
params = read_parameters("../../parameters.yaml")
|
|
|
|
| 579 |
pool.join()
|
| 580 |
|
| 581 |
|
|
|
|
| 582 |
def construct_prompt(
|
| 583 |
instruction: str,
|
| 584 |
test_example: dict,
|
|
|
|
| 586 |
num_examples: int,
|
| 587 |
lang: str,
|
| 588 |
config: Dict[str, str],
|
| 589 |
+
dataset_name: str = "xquad",
|
| 590 |
):
|
| 591 |
if not instruction:
|
| 592 |
+
instruction = create_instruction(lang, config["prefix"], config["output"])
|
| 593 |
|
| 594 |
example_prompt = PromptTemplate(
|
| 595 |
input_variables=["context", "question", "answers"],
|
|
|
|
| 597 |
)
|
| 598 |
|
| 599 |
zero_shot_template = (
|
| 600 |
+
f"""{instruction}""" + " \n <Context>: {context} \n <Question>: {question} " ""
|
| 601 |
)
|
| 602 |
if not zero_shot:
|
| 603 |
try:
|
| 604 |
+
test_data = load_qa_dataset(
|
| 605 |
+
dataset_name=dataset_name, lang=lang, split="test", limit=100
|
| 606 |
+
)
|
| 607 |
except Exception as e:
|
| 608 |
raise KeyError(f"{lang} is not supported in {dataset_name}")
|
| 609 |
|
|
|
|
| 610 |
ic_examples = []
|
| 611 |
if not zero_shot:
|
| 612 |
|
|
|
|
| 632 |
)
|
| 633 |
)
|
| 634 |
print("lang", lang)
|
| 635 |
+
print(config["input"], lang)
|
| 636 |
if config["input"] != lang:
|
| 637 |
test_example = _translate_example(
|
| 638 |
example=test_example, src_language=lang, target_language=config["input"]
|
| 639 |
)
|
| 640 |
|
| 641 |
return prompt.format(
|
| 642 |
+
question=test_example["question"], context=test_example["context"]
|
| 643 |
+
)
|
tasks/summarization.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
-
from typing import
|
| 2 |
|
| 3 |
import numpy as np
|
| 4 |
from datasets import Dataset, load_dataset
|
| 5 |
from easygoogletranslate import EasyGoogleTranslate
|
| 6 |
-
from langchain.prompts import
|
| 7 |
|
| 8 |
LANGUAGE_TO_SUFFIX = {
|
| 9 |
"chinese_simplified": "zh-CN",
|
|
@@ -48,12 +48,16 @@ LANGUAGE_TO_SUFFIX = {
|
|
| 48 |
"hungarian": "hu",
|
| 49 |
"czech": "cs",
|
| 50 |
"slovak": "sk",
|
| 51 |
-
"ukrainian": "uk"
|
| 52 |
}
|
| 53 |
|
| 54 |
|
| 55 |
def choose_few_shot_examples(
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
) -> List[Dict[str, Union[str, int]]]:
|
| 58 |
selected_examples = []
|
| 59 |
|
|
@@ -67,13 +71,25 @@ def choose_few_shot_examples(
|
|
| 67 |
.tolist()
|
| 68 |
)
|
| 69 |
|
| 70 |
-
ic_examples = [
|
| 71 |
-
|
|
|
|
|
|
|
| 72 |
|
| 73 |
for idx, ic_language in enumerate(context):
|
| 74 |
-
|
| 75 |
-
selected_examples.append(
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
return selected_examples
|
| 79 |
|
|
@@ -87,12 +103,16 @@ def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
|
| 87 |
return translator.translate(basic_instruction)
|
| 88 |
|
| 89 |
|
| 90 |
-
def _translate_example(
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
try:
|
| 95 |
-
return {
|
| 96 |
except Exception as e:
|
| 97 |
print(e)
|
| 98 |
|
|
@@ -117,17 +137,17 @@ def load_xlsum_data(lang, split, limit=5):
|
|
| 117 |
|
| 118 |
|
| 119 |
def construct_prompt(
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
):
|
| 128 |
if not instruction:
|
| 129 |
print(lang)
|
| 130 |
-
instruction = create_instruction(lang, config[
|
| 131 |
|
| 132 |
example_prompt = PromptTemplate(
|
| 133 |
input_variables=["summary", "text"], template="Text: {text}\nSummary: {summary}"
|
|
@@ -139,7 +159,9 @@ def construct_prompt(
|
|
| 139 |
try:
|
| 140 |
test_data = load_xlsum_data(lang=lang, split="test", limit=100)
|
| 141 |
except Exception as e:
|
| 142 |
-
raise KeyError(
|
|
|
|
|
|
|
| 143 |
|
| 144 |
ic_examples = []
|
| 145 |
if not zero_shot:
|
|
|
|
| 1 |
+
from typing import Dict, List, Union
|
| 2 |
|
| 3 |
import numpy as np
|
| 4 |
from datasets import Dataset, load_dataset
|
| 5 |
from easygoogletranslate import EasyGoogleTranslate
|
| 6 |
+
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
|
| 7 |
|
| 8 |
LANGUAGE_TO_SUFFIX = {
|
| 9 |
"chinese_simplified": "zh-CN",
|
|
|
|
| 48 |
"hungarian": "hu",
|
| 49 |
"czech": "cs",
|
| 50 |
"slovak": "sk",
|
| 51 |
+
"ukrainian": "uk",
|
| 52 |
}
|
| 53 |
|
| 54 |
|
| 55 |
def choose_few_shot_examples(
|
| 56 |
+
train_dataset: Dataset,
|
| 57 |
+
few_shot_size: int,
|
| 58 |
+
context: List[str],
|
| 59 |
+
selection_criteria: str,
|
| 60 |
+
lang: str,
|
| 61 |
) -> List[Dict[str, Union[str, int]]]:
|
| 62 |
selected_examples = []
|
| 63 |
|
|
|
|
| 71 |
.tolist()
|
| 72 |
)
|
| 73 |
|
| 74 |
+
ic_examples = [
|
| 75 |
+
{"text": train_dataset[idx]["text"], "summary": train_dataset[idx]["summary"]}
|
| 76 |
+
for idx in example_idxs
|
| 77 |
+
]
|
| 78 |
|
| 79 |
for idx, ic_language in enumerate(context):
|
| 80 |
+
(
|
| 81 |
+
selected_examples.append(ic_examples[idx])
|
| 82 |
+
if ic_language == lang
|
| 83 |
+
else (
|
| 84 |
+
selected_examples.append(
|
| 85 |
+
_translate_example(
|
| 86 |
+
example=ic_examples[idx],
|
| 87 |
+
src_language=lang,
|
| 88 |
+
target_language=ic_language,
|
| 89 |
+
)
|
| 90 |
+
)
|
| 91 |
+
)
|
| 92 |
+
)
|
| 93 |
|
| 94 |
return selected_examples
|
| 95 |
|
|
|
|
| 103 |
return translator.translate(basic_instruction)
|
| 104 |
|
| 105 |
|
| 106 |
+
def _translate_example(
|
| 107 |
+
example: Dict[str, str], src_language: str, target_language: str
|
| 108 |
+
):
|
| 109 |
+
translator = EasyGoogleTranslate(
|
| 110 |
+
source_language=LANGUAGE_TO_SUFFIX[src_language],
|
| 111 |
+
target_language=LANGUAGE_TO_SUFFIX[target_language],
|
| 112 |
+
timeout=30,
|
| 113 |
+
)
|
| 114 |
try:
|
| 115 |
+
return {"text": translator.translate(example["text"]), "summary": ""}
|
| 116 |
except Exception as e:
|
| 117 |
print(e)
|
| 118 |
|
|
|
|
| 137 |
|
| 138 |
|
| 139 |
def construct_prompt(
|
| 140 |
+
instruction: str,
|
| 141 |
+
test_example: dict,
|
| 142 |
+
zero_shot: bool,
|
| 143 |
+
dataset: str,
|
| 144 |
+
num_examples: int,
|
| 145 |
+
lang: str,
|
| 146 |
+
config: Dict[str, str],
|
| 147 |
):
|
| 148 |
if not instruction:
|
| 149 |
print(lang)
|
| 150 |
+
instruction = create_instruction(lang, config["prefix"], config["output"])
|
| 151 |
|
| 152 |
example_prompt = PromptTemplate(
|
| 153 |
input_variables=["summary", "text"], template="Text: {text}\nSummary: {summary}"
|
|
|
|
| 159 |
try:
|
| 160 |
test_data = load_xlsum_data(lang=lang, split="test", limit=100)
|
| 161 |
except Exception as e:
|
| 162 |
+
raise KeyError(
|
| 163 |
+
f"{lang} is not supported in XlSum dataset, choose supported language in few-shot"
|
| 164 |
+
)
|
| 165 |
|
| 166 |
ic_examples = []
|
| 167 |
if not zero_shot:
|