Paste Question 4 for Lab 7
Browse filesDeploy an interactive chart for the moving average of the approval rate for Joe Biden
app.py
CHANGED
|
@@ -1,147 +1,66 @@
|
|
| 1 |
-
import io
|
| 2 |
-
import random
|
| 3 |
-
from typing import List, Tuple
|
| 4 |
-
|
| 5 |
-
import aiohttp
|
| 6 |
import panel as pn
|
| 7 |
-
|
| 8 |
-
from transformers import CLIPModel, CLIPProcessor
|
| 9 |
-
|
| 10 |
-
pn.extension(design="bootstrap", sizing_mode="stretch_width")
|
| 11 |
-
|
| 12 |
-
ICON_URLS = {
|
| 13 |
-
"brand-github": "https://github.com/holoviz/panel",
|
| 14 |
-
"brand-twitter": "https://twitter.com/Panel_Org",
|
| 15 |
-
"brand-linkedin": "https://www.linkedin.com/company/panel-org",
|
| 16 |
-
"message-circle": "https://discourse.holoviz.org/",
|
| 17 |
-
"brand-discord": "https://discord.gg/AXRHnJU6sP",
|
| 18 |
-
}
|
| 19 |
-
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
@pn.cache
|
| 30 |
-
def load_processor_model(
|
| 31 |
-
processor_name: str, model_name: str
|
| 32 |
-
) -> Tuple[CLIPProcessor, CLIPModel]:
|
| 33 |
-
processor = CLIPProcessor.from_pretrained(processor_name)
|
| 34 |
-
model = CLIPModel.from_pretrained(model_name)
|
| 35 |
-
return processor, model
|
| 36 |
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
async with aiohttp.ClientSession() as session:
|
| 40 |
-
async with session.get(image_url) as resp:
|
| 41 |
-
return Image.open(io.BytesIO(await resp.read()))
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
| 47 |
)
|
| 48 |
-
inputs = processor(
|
| 49 |
-
text=class_items,
|
| 50 |
-
images=[image],
|
| 51 |
-
return_tensors="pt", # pytorch tensors
|
| 52 |
-
)
|
| 53 |
-
outputs = model(**inputs)
|
| 54 |
-
logits_per_image = outputs.logits_per_image
|
| 55 |
-
class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
|
| 56 |
-
return class_likelihoods[0]
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
High level function that takes in the user inputs and returns the
|
| 62 |
-
classification results as panel objects.
|
| 63 |
-
"""
|
| 64 |
-
try:
|
| 65 |
-
main.disabled = True
|
| 66 |
-
if not image_url:
|
| 67 |
-
yield "##### ⚠️ Provide an image URL"
|
| 68 |
-
return
|
| 69 |
-
|
| 70 |
-
yield "##### ⚙ Fetching image and running model..."
|
| 71 |
-
try:
|
| 72 |
-
pil_img = await open_image_url(image_url)
|
| 73 |
-
img = pn.pane.Image(pil_img, height=400, align="center")
|
| 74 |
-
except Exception as e:
|
| 75 |
-
yield f"##### 😔 Something went wrong, please try a different URL!"
|
| 76 |
-
return
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
)
|
| 108 |
-
class_names = pn.widgets.TextInput(
|
| 109 |
-
name="Comma separated class names",
|
| 110 |
-
placeholder="Enter possible class names, e.g. cat, dog",
|
| 111 |
-
value="cat, dog, parrot",
|
| 112 |
-
)
|
| 113 |
-
|
| 114 |
-
input_widgets = pn.Column(
|
| 115 |
-
"##### 😊 Click randomize or paste a URL to start classifying!",
|
| 116 |
-
pn.Row(image_url, randomize_url),
|
| 117 |
-
class_names,
|
| 118 |
-
)
|
| 119 |
-
|
| 120 |
-
# add interactivity
|
| 121 |
-
interactive_result = pn.panel(
|
| 122 |
-
pn.bind(process_inputs, image_url=image_url, class_names=class_names),
|
| 123 |
-
height=600,
|
| 124 |
-
)
|
| 125 |
-
|
| 126 |
-
# add footer
|
| 127 |
-
footer_row = pn.Row(pn.Spacer(), align="center")
|
| 128 |
-
for icon, url in ICON_URLS.items():
|
| 129 |
-
href_button = pn.widgets.Button(icon=icon, width=35, height=35)
|
| 130 |
-
href_button.js_on_click(code=f"window.open('{url}')")
|
| 131 |
-
footer_row.append(href_button)
|
| 132 |
-
footer_row.append(pn.Spacer())
|
| 133 |
-
|
| 134 |
-
# create dashboard
|
| 135 |
-
main = pn.WidgetBox(
|
| 136 |
-
input_widgets,
|
| 137 |
-
interactive_result,
|
| 138 |
-
footer_row,
|
| 139 |
-
)
|
| 140 |
-
|
| 141 |
-
title = "Panel Demo - Image Classification"
|
| 142 |
-
pn.template.BootstrapTemplate(
|
| 143 |
-
title=title,
|
| 144 |
-
main=main,
|
| 145 |
-
main_max_width="min(50%, 698px)",
|
| 146 |
-
header_background="#F08080",
|
| 147 |
-
).servable(title=title)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import panel as pn
|
| 2 |
+
import vega_datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
# Enable Panel extensions
|
| 5 |
+
pn.extension(design='bootstrap')
|
| 6 |
+
pn.extension('vega')
|
| 7 |
+
template = pn.template.BootstrapTemplate(
|
| 8 |
+
title='Nan-Hsin Lin',
|
| 9 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Define a function to create and return a plot
|
| 12 |
|
| 13 |
+
def create_plot(subgroup, date_range, moving_av_window):
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Apply any required transformations to the data in pandas
|
| 16 |
+
df3 = df2[df2['choice'] == 'approve'].copy()
|
| 17 |
+
df3 = df3[df3['subgroup'] == subgroup]
|
| 18 |
+
df3['smoothed_rate'] = df3['rate'].rolling(moving_av_window).mean().shift(-int(moving_av_window/2))
|
| 19 |
+
start_date, end_date = date_range
|
| 20 |
+
df3 = df3[(df3['timestamp'] >= np.datetime64(start_date)) & (df3['timestamp'] <= np.datetime64(end_date))]
|
| 21 |
|
| 22 |
+
# Line chart
|
| 23 |
+
rate_line = alt.Chart(df3).mark_line(strokeWidth=2, color='red').encode(
|
| 24 |
+
x=alt.X('timestamp:T', axis=alt.Axis(title=None)),
|
| 25 |
+
y=alt.Y('average(smoothed_rate):Q', axis=alt.Axis(title='move_avg'), scale=alt.Scale(domain=[30, 60]))
|
| 26 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
# Scatter plot with individual polls
|
| 29 |
+
rate_scatter = alt.Chart(df3).mark_point(color='grey', size=2, opacity=0.7).encode(
|
| 30 |
+
x=alt.X('timestamp:T', axis=alt.Axis(title=None)),
|
| 31 |
+
y=alt.Y('average(rate):Q', axis=alt.Axis(title='approve'), scale=alt.Scale(domain=[30, 60])),
|
| 32 |
+
)
|
| 33 |
|
| 34 |
+
# Put them together
|
| 35 |
+
plot = alt.layer(rate_line, rate_scatter).configure_view(strokeWidth=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
# Return the combined chart
|
| 38 |
+
return plot
|
| 39 |
+
|
| 40 |
+
# Create the selection widget
|
| 41 |
+
select = pn.widgets.Select(name='Select', options=df2['subgroup'].unique().tolist())
|
| 42 |
+
|
| 43 |
+
# Create the slider for the date range
|
| 44 |
+
dateSlider = pn.widgets.DateRangeSlider(name='Date Range Slider',
|
| 45 |
+
start=df2['timestamp'].min(),
|
| 46 |
+
end=df2['timestamp'].max(),
|
| 47 |
+
value=(df2['timestamp'].min(), df2['timestamp'].max()))
|
| 48 |
+
|
| 49 |
+
# Create the slider for the moving average window
|
| 50 |
+
avgSlider = pn.widgets.IntSlider(name='Moving average window', start=1, end=100, value=1)
|
| 51 |
+
|
| 52 |
+
# Bind the widgets to the create_plot function
|
| 53 |
+
plot_widgets = pn.Row(pn.bind(create_plot, select, dateSlider, avgSlider))
|
| 54 |
+
|
| 55 |
+
# Combine everything in a Panel Column to create an app
|
| 56 |
+
maincol = pn.Column()
|
| 57 |
+
maincol.append("# SI649 Lab07")
|
| 58 |
+
maincol.append("Hello! This is **Nan**. I love information visualization! Email me: [nanhsin@umich.edu](mailto:nanhsin@umich.edu)")
|
| 59 |
+
maincol.append(plot_widgets)
|
| 60 |
+
maincol.append(select)
|
| 61 |
+
maincol.append(dateSlider)
|
| 62 |
+
maincol.append(avgSlider)
|
| 63 |
+
template.main.append(maincol)
|
| 64 |
+
|
| 65 |
+
# set the app to be servable
|
| 66 |
+
template.servable(title="Nan-Hsin Lin")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|