Spaces:
Runtime error
Runtime error
fix code
Browse files
app.py
CHANGED
|
@@ -2,11 +2,17 @@ import torch
|
|
| 2 |
from pipelines.inverted_ve_pipeline import STYLE_DESCRIPTION_DICT, create_image_grid
|
| 3 |
import gradio as gr
|
| 4 |
import os, json
|
|
|
|
|
|
|
| 5 |
|
|
|
|
| 6 |
from pipelines.pipeline_stable_diffusion_xl import StableDiffusionXLPipeline
|
| 7 |
-
from diffusers import AutoencoderKL
|
|
|
|
| 8 |
from random import randint
|
| 9 |
from utils import init_latent
|
|
|
|
|
|
|
| 10 |
|
| 11 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 12 |
if device == 'cpu':
|
|
@@ -34,14 +40,30 @@ def memory_efficient(model):
|
|
| 34 |
except AttributeError:
|
| 35 |
print("enable_xformers_memory_efficient_attention is not supported.")
|
| 36 |
|
|
|
|
| 37 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
model = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch_dtype)
|
| 39 |
|
| 40 |
print("vae")
|
| 41 |
memory_efficient(vae)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
print("SDXL")
|
| 43 |
memory_efficient(model)
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# controlnet_scale, canny thres 1, 2 (2 > 1, 2:1, 3:1)
|
| 47 |
|
|
@@ -50,6 +72,62 @@ def parse_config(config):
|
|
| 50 |
config = json.load(f)
|
| 51 |
return config
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
def load_example_style():
|
| 55 |
folder_path = 'assets/ref'
|
|
@@ -70,13 +148,134 @@ def load_example_style():
|
|
| 70 |
return examples
|
| 71 |
|
| 72 |
def style_fn(image_path, style_name, content_text, output_number, diffusion_step=50):
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
config_path = './config/{}.json'.format(style_name)
|
| 81 |
config = parse_config(config_path)
|
| 82 |
|
|
@@ -84,7 +283,6 @@ def style_fn(image_path, style_name, content_text, output_number, diffusion_step
|
|
| 84 |
inf_seeds = [randint(0, 10**10) for _ in range(int(output_number))]
|
| 85 |
# inf_seeds = [i for i in range(int(output_number))]
|
| 86 |
|
| 87 |
-
|
| 88 |
activate_layer_indices_list = config['inference_info']['activate_layer_indices_list']
|
| 89 |
activate_step_indices_list = config['inference_info']['activate_step_indices_list']
|
| 90 |
ref_seed = config['reference_info']['ref_seeds'][0]
|
|
@@ -106,6 +304,9 @@ def style_fn(image_path, style_name, content_text, output_number, diffusion_step
|
|
| 106 |
|
| 107 |
use_advanced_sampling = config['inference_info']['use_advanced_sampling']
|
| 108 |
|
|
|
|
|
|
|
|
|
|
| 109 |
style_description_pos, style_description_neg = STYLE_DESCRIPTION_DICT[style_name][0], \
|
| 110 |
STYLE_DESCRIPTION_DICT[style_name][1]
|
| 111 |
|
|
@@ -126,34 +327,39 @@ def style_fn(image_path, style_name, content_text, output_number, diffusion_step
|
|
| 126 |
|
| 127 |
for activate_step_indices in activate_step_indices_list:
|
| 128 |
|
| 129 |
-
str_activate_layer, str_activate_step =
|
| 130 |
activate_layer_indices=activate_layer_indices,
|
| 131 |
attn_map_save_steps=attn_map_save_steps,
|
| 132 |
-
activate_step_indices=activate_step_indices,
|
|
|
|
| 133 |
adain_queries=adain_queries,
|
| 134 |
adain_keys=adain_keys,
|
| 135 |
adain_values=adain_values,
|
| 136 |
)
|
| 137 |
-
|
| 138 |
-
ref_latent =
|
|
|
|
| 139 |
latents = [ref_latent]
|
| 140 |
|
| 141 |
for inf_seed in inf_seeds:
|
| 142 |
-
# latents.append(
|
| 143 |
-
inf_latent = init_latent(
|
| 144 |
latents.append(inf_latent)
|
| 145 |
|
|
|
|
| 146 |
latents = torch.cat(latents, dim=0)
|
| 147 |
latents.to(device)
|
| 148 |
|
| 149 |
-
images =
|
| 150 |
prompt=ref_prompt,
|
| 151 |
negative_prompt=style_description_neg,
|
| 152 |
guidance_scale=guidance_scale,
|
| 153 |
num_inference_steps=diffusion_step,
|
|
|
|
| 154 |
latents=latents,
|
| 155 |
num_images_per_prompt=len(inf_seeds) + 1,
|
| 156 |
target_prompt=inf_prompt,
|
|
|
|
| 157 |
use_inf_negative_prompt=use_inf_negative_prompt,
|
| 158 |
use_advanced_sampling=use_advanced_sampling
|
| 159 |
)[0][1:]
|
|
@@ -162,40 +368,65 @@ def style_fn(image_path, style_name, content_text, output_number, diffusion_step
|
|
| 162 |
n_col = len(inf_seeds) # ์๋ณธ์ถ๊ฐํ๋ ค๋ฉด + 1
|
| 163 |
|
| 164 |
# make grid
|
| 165 |
-
grid = create_image_grid(images, n_row, n_col
|
| 166 |
-
|
| 167 |
-
torch.cuda.empty_cache()
|
| 168 |
|
| 169 |
return grid
|
| 170 |
|
|
|
|
| 171 |
description_md = """
|
| 172 |
|
| 173 |
### We introduce `Visual Style Prompting`, which reflects the style of a reference image to the images generated by a pretrained text-to-image diffusion model without finetuning or optimization (e.g., Figure N).
|
| 174 |
### ๐ [[Paper](https://arxiv.org/abs/2402.12974)] | โจ [[Project page](https://curryjung.github.io/VisualStylePrompt)] | โจ [[Code](https://github.com/naver-ai/Visual-Style-Prompting)]
|
| 175 |
-
### ๐ฅ [[w/ Controlnet ver](https://huggingface.co/spaces/naver-ai/VisualStylePrompting_Controlnet)]
|
| 176 |
---
|
| 177 |
-
### To try out our vanilla demo,
|
| 178 |
1. Choose a `style reference` from the collection of images below.
|
| 179 |
2. Enter the `text prompt`.
|
| 180 |
3. Choose the `number of outputs`.
|
| 181 |
-
|
| 182 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
### Enjoy ! ๐
|
| 184 |
"""
|
| 185 |
|
| 186 |
iface_style = gr.Interface(
|
| 187 |
fn=style_fn,
|
| 188 |
inputs=[
|
| 189 |
-
gr.components.Image(label="Style Image"),
|
| 190 |
gr.components.Textbox(label='Style name', visible=False),
|
| 191 |
gr.components.Textbox(label="Text prompt", placeholder="Enter Text prompt"),
|
| 192 |
gr.components.Textbox(label="Number of outputs", placeholder="Enter Number of outputs"),
|
| 193 |
gr.components.Slider(minimum=10, maximum=50, step=10, value=50, label="Diffusion steps")
|
| 194 |
],
|
| 195 |
-
outputs=gr.components.Image(
|
| 196 |
title="๐จ Visual Style Prompting (default)",
|
| 197 |
description=description_md,
|
| 198 |
examples=load_example_style(),
|
| 199 |
)
|
| 200 |
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from pipelines.inverted_ve_pipeline import STYLE_DESCRIPTION_DICT, create_image_grid
|
| 3 |
import gradio as gr
|
| 4 |
import os, json
|
| 5 |
+
import numpy as np
|
| 6 |
+
from PIL import Image
|
| 7 |
|
| 8 |
+
from pipelines.pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
|
| 9 |
from pipelines.pipeline_stable_diffusion_xl import StableDiffusionXLPipeline
|
| 10 |
+
from diffusers import ControlNetModel, AutoencoderKL
|
| 11 |
+
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
| 12 |
from random import randint
|
| 13 |
from utils import init_latent
|
| 14 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
| 15 |
+
from diffusers import DDIMScheduler
|
| 16 |
|
| 17 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 18 |
if device == 'cpu':
|
|
|
|
| 40 |
except AttributeError:
|
| 41 |
print("enable_xformers_memory_efficient_attention is not supported.")
|
| 42 |
|
| 43 |
+
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-depth-sdxl-1.0", torch_dtype=torch_dtype)
|
| 44 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype)
|
| 45 |
+
|
| 46 |
+
model_controlnet = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 47 |
+
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch_dtype
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
model = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch_dtype)
|
| 51 |
|
| 52 |
print("vae")
|
| 53 |
memory_efficient(vae)
|
| 54 |
+
print("control")
|
| 55 |
+
memory_efficient(controlnet)
|
| 56 |
+
print("ControlNet-SDXL")
|
| 57 |
+
memory_efficient(model_controlnet)
|
| 58 |
print("SDXL")
|
| 59 |
memory_efficient(model)
|
| 60 |
|
| 61 |
+
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device)
|
| 62 |
+
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
|
| 63 |
+
|
| 64 |
+
blip_processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
| 65 |
+
blip_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch_dtype).to(device)
|
| 66 |
+
|
| 67 |
|
| 68 |
# controlnet_scale, canny thres 1, 2 (2 > 1, 2:1, 3:1)
|
| 69 |
|
|
|
|
| 72 |
config = json.load(f)
|
| 73 |
return config
|
| 74 |
|
| 75 |
+
def get_depth_map(image):
|
| 76 |
+
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device)
|
| 77 |
+
with torch.no_grad(), torch.autocast(device):
|
| 78 |
+
depth_map = depth_estimator(image).predicted_depth
|
| 79 |
+
|
| 80 |
+
depth_map = torch.nn.functional.interpolate(
|
| 81 |
+
depth_map.unsqueeze(1),
|
| 82 |
+
size=(1024, 1024),
|
| 83 |
+
mode="bicubic",
|
| 84 |
+
align_corners=False,
|
| 85 |
+
)
|
| 86 |
+
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
| 87 |
+
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
| 88 |
+
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
| 89 |
+
image = torch.cat([depth_map] * 3, dim=1)
|
| 90 |
+
|
| 91 |
+
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
| 92 |
+
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
| 93 |
+
return image
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_depth_edge_array(depth_img_path):
|
| 97 |
+
depth_image_tmp = Image.fromarray(depth_img_path)
|
| 98 |
+
|
| 99 |
+
# get depth map
|
| 100 |
+
depth_map = get_depth_map(depth_image_tmp)
|
| 101 |
+
|
| 102 |
+
return depth_map
|
| 103 |
+
|
| 104 |
+
def blip_inf_prompt(image):
|
| 105 |
+
inputs = blip_processor(images=image, return_tensors="pt").to(device, torch.float16)
|
| 106 |
+
|
| 107 |
+
generated_ids = blip_model.generate(**inputs)
|
| 108 |
+
generated_text = blip_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 109 |
+
|
| 110 |
+
return generated_text
|
| 111 |
+
|
| 112 |
+
def load_example_controlnet():
|
| 113 |
+
folder_path = 'assets/ref'
|
| 114 |
+
examples = []
|
| 115 |
+
for filename in os.listdir(folder_path):
|
| 116 |
+
if filename.endswith((".png")):
|
| 117 |
+
image_path = os.path.join(folder_path, filename)
|
| 118 |
+
image_name = os.path.basename(image_path)
|
| 119 |
+
style_name = image_name.split('_')[1]
|
| 120 |
+
|
| 121 |
+
config_path = './config/{}.json'.format(style_name)
|
| 122 |
+
config = parse_config(config_path)
|
| 123 |
+
inf_object_name = config["inference_info"]["inf_object_list"][0]
|
| 124 |
+
|
| 125 |
+
canny_path = './assets/depth_dir/gundam.png'
|
| 126 |
+
image_info = [image_path, canny_path, style_name, inf_object_name, 1, 0.5, 50]
|
| 127 |
+
|
| 128 |
+
examples.append(image_info)
|
| 129 |
+
|
| 130 |
+
return examples
|
| 131 |
|
| 132 |
def load_example_style():
|
| 133 |
folder_path = 'assets/ref'
|
|
|
|
| 148 |
return examples
|
| 149 |
|
| 150 |
def style_fn(image_path, style_name, content_text, output_number, diffusion_step=50):
|
| 151 |
+
user_image_flag = not style_name.strip() # empty
|
| 152 |
+
|
| 153 |
+
if not user_image_flag:
|
| 154 |
+
real_img = None
|
| 155 |
+
config_path = './config/{}.json'.format(style_name)
|
| 156 |
+
config = parse_config(config_path)
|
| 157 |
+
|
| 158 |
+
inf_object = content_text
|
| 159 |
+
inf_seeds = [randint(0, 10**10) for _ in range(int(output_number))]
|
| 160 |
+
|
| 161 |
+
activate_layer_indices_list = config['inference_info']['activate_layer_indices_list']
|
| 162 |
+
activate_step_indices_list = config['inference_info']['activate_step_indices_list']
|
| 163 |
+
ref_seed = config['reference_info']['ref_seeds'][0]
|
| 164 |
+
|
| 165 |
+
attn_map_save_steps = config['inference_info']['attn_map_save_steps']
|
| 166 |
+
guidance_scale = config['guidance_scale']
|
| 167 |
+
use_inf_negative_prompt = config['inference_info']['use_negative_prompt']
|
| 168 |
+
|
| 169 |
+
ref_object = config["reference_info"]["ref_object_list"][0]
|
| 170 |
+
ref_with_style_description = config['reference_info']['with_style_description']
|
| 171 |
+
inf_with_style_description = config['inference_info']['with_style_description']
|
| 172 |
+
|
| 173 |
+
use_shared_attention = config['inference_info']['use_shared_attention']
|
| 174 |
+
adain_queries = config['inference_info']['adain_queries']
|
| 175 |
+
adain_keys = config['inference_info']['adain_keys']
|
| 176 |
+
adain_values = config['inference_info']['adain_values']
|
| 177 |
+
|
| 178 |
+
use_advanced_sampling = config['inference_info']['use_advanced_sampling']
|
| 179 |
+
use_prompt_as_null = False
|
| 180 |
+
|
| 181 |
+
style_name = config["style_name_list"][0]
|
| 182 |
+
style_description_pos, style_description_neg = STYLE_DESCRIPTION_DICT[style_name][0], \
|
| 183 |
+
STYLE_DESCRIPTION_DICT[style_name][1]
|
| 184 |
+
if ref_with_style_description:
|
| 185 |
+
ref_prompt = style_description_pos.replace("{object}", ref_object)
|
| 186 |
+
else:
|
| 187 |
+
ref_prompt = ref_object
|
| 188 |
+
|
| 189 |
+
if inf_with_style_description:
|
| 190 |
+
inf_prompt = style_description_pos.replace("{object}", inf_object)
|
| 191 |
+
else:
|
| 192 |
+
inf_prompt = inf_object
|
| 193 |
+
else:
|
| 194 |
+
model.scheduler = DDIMScheduler.from_config(model.scheduler.config)
|
| 195 |
+
origin_real_img = Image.open(image_path).resize((1024, 1024), resample=Image.BICUBIC)
|
| 196 |
+
real_img = np.array(origin_real_img).astype(np.float32) / 255.0
|
| 197 |
+
|
| 198 |
+
style_name = 'default'
|
| 199 |
+
|
| 200 |
+
config_path = './config/{}.json'.format(style_name)
|
| 201 |
+
config = parse_config(config_path)
|
| 202 |
+
|
| 203 |
+
inf_object = content_text
|
| 204 |
+
inf_seeds = [randint(0, 10**10) for _ in range(int(output_number))]
|
| 205 |
+
|
| 206 |
+
activate_layer_indices_list = config['inference_info']['activate_layer_indices_list']
|
| 207 |
+
activate_step_indices_list = config['inference_info']['activate_step_indices_list']
|
| 208 |
+
ref_seed = 0
|
| 209 |
+
|
| 210 |
+
attn_map_save_steps = config['inference_info']['attn_map_save_steps']
|
| 211 |
+
guidance_scale = config['guidance_scale']
|
| 212 |
+
use_inf_negative_prompt = False
|
| 213 |
+
|
| 214 |
+
use_shared_attention = config['inference_info']['use_shared_attention']
|
| 215 |
+
adain_queries = config['inference_info']['adain_queries']
|
| 216 |
+
adain_keys = config['inference_info']['adain_keys']
|
| 217 |
+
adain_values = config['inference_info']['adain_values']
|
| 218 |
+
|
| 219 |
+
use_advanced_sampling = False
|
| 220 |
+
use_prompt_as_null = True
|
| 221 |
+
|
| 222 |
+
ref_prompt = blip_inf_prompt(origin_real_img)
|
| 223 |
+
inf_prompt = inf_object
|
| 224 |
+
style_description_neg = None
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
# Inference
|
| 228 |
+
with torch.inference_mode():
|
| 229 |
+
grid = None
|
| 230 |
+
|
| 231 |
+
for activate_layer_indices in activate_layer_indices_list:
|
| 232 |
|
| 233 |
+
for activate_step_indices in activate_step_indices_list:
|
| 234 |
+
|
| 235 |
+
str_activate_layer, str_activate_step = model.activate_layer(
|
| 236 |
+
activate_layer_indices=activate_layer_indices,
|
| 237 |
+
attn_map_save_steps=attn_map_save_steps,
|
| 238 |
+
activate_step_indices=activate_step_indices, use_shared_attention=use_shared_attention,
|
| 239 |
+
adain_queries=adain_queries,
|
| 240 |
+
adain_keys=adain_keys,
|
| 241 |
+
adain_values=adain_values,
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
ref_latent = init_latent(model, device_name=device, dtype=torch_dtype, seed=ref_seed)
|
| 245 |
+
latents = [ref_latent]
|
| 246 |
+
num_images_per_prompt = len(inf_seeds) + 1
|
| 247 |
+
|
| 248 |
+
for inf_seed in inf_seeds:
|
| 249 |
+
# latents.append(model.get_init_latent(inf_seed, precomputed_path=None))
|
| 250 |
+
inf_latent = init_latent(model, device_name=device, dtype=torch_dtype, seed=inf_seed)
|
| 251 |
+
latents.append(inf_latent)
|
| 252 |
+
|
| 253 |
+
latents = torch.cat(latents, dim=0)
|
| 254 |
+
latents.to(device)
|
| 255 |
+
|
| 256 |
+
images = model(
|
| 257 |
+
prompt=ref_prompt,
|
| 258 |
+
negative_prompt=style_description_neg,
|
| 259 |
+
guidance_scale=guidance_scale,
|
| 260 |
+
num_inference_steps=diffusion_step,
|
| 261 |
+
latents=latents,
|
| 262 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 263 |
+
target_prompt=inf_prompt,
|
| 264 |
+
use_inf_negative_prompt=use_inf_negative_prompt,
|
| 265 |
+
use_advanced_sampling=use_advanced_sampling,
|
| 266 |
+
use_prompt_as_null=use_prompt_as_null,
|
| 267 |
+
image=real_img
|
| 268 |
+
)[0][1:]
|
| 269 |
+
|
| 270 |
+
n_row = 1
|
| 271 |
+
n_col = len(inf_seeds) + 1 # ์๋ณธ์ถ๊ฐํ๋ ค๋ฉด + 1
|
| 272 |
+
|
| 273 |
+
# make grid
|
| 274 |
+
grid = create_image_grid(images, n_row, n_col, padding=10)
|
| 275 |
+
|
| 276 |
+
return grid
|
| 277 |
+
|
| 278 |
+
def controlnet_fn(image_path, depth_image_path, style_name, content_text, output_number, controlnet_scale=0.5, diffusion_step=50):
|
| 279 |
config_path = './config/{}.json'.format(style_name)
|
| 280 |
config = parse_config(config_path)
|
| 281 |
|
|
|
|
| 283 |
inf_seeds = [randint(0, 10**10) for _ in range(int(output_number))]
|
| 284 |
# inf_seeds = [i for i in range(int(output_number))]
|
| 285 |
|
|
|
|
| 286 |
activate_layer_indices_list = config['inference_info']['activate_layer_indices_list']
|
| 287 |
activate_step_indices_list = config['inference_info']['activate_step_indices_list']
|
| 288 |
ref_seed = config['reference_info']['ref_seeds'][0]
|
|
|
|
| 304 |
|
| 305 |
use_advanced_sampling = config['inference_info']['use_advanced_sampling']
|
| 306 |
|
| 307 |
+
#get canny edge array
|
| 308 |
+
depth_image = get_depth_edge_array(depth_image_path)
|
| 309 |
+
|
| 310 |
style_description_pos, style_description_neg = STYLE_DESCRIPTION_DICT[style_name][0], \
|
| 311 |
STYLE_DESCRIPTION_DICT[style_name][1]
|
| 312 |
|
|
|
|
| 327 |
|
| 328 |
for activate_step_indices in activate_step_indices_list:
|
| 329 |
|
| 330 |
+
str_activate_layer, str_activate_step = model_controlnet.activate_layer(
|
| 331 |
activate_layer_indices=activate_layer_indices,
|
| 332 |
attn_map_save_steps=attn_map_save_steps,
|
| 333 |
+
activate_step_indices=activate_step_indices,
|
| 334 |
+
use_shared_attention=use_shared_attention,
|
| 335 |
adain_queries=adain_queries,
|
| 336 |
adain_keys=adain_keys,
|
| 337 |
adain_values=adain_values,
|
| 338 |
)
|
| 339 |
+
|
| 340 |
+
# ref_latent = model_controlnet.get_init_latent(ref_seed, precomputed_path=None)
|
| 341 |
+
ref_latent = init_latent(model_controlnet, device_name=device, dtype=torch_dtype, seed=ref_seed)
|
| 342 |
latents = [ref_latent]
|
| 343 |
|
| 344 |
for inf_seed in inf_seeds:
|
| 345 |
+
# latents.append(model_controlnet.get_init_latent(inf_seed, precomputed_path=None))
|
| 346 |
+
inf_latent = init_latent(model_controlnet, device_name=device, dtype=torch_dtype, seed=inf_seed)
|
| 347 |
latents.append(inf_latent)
|
| 348 |
|
| 349 |
+
|
| 350 |
latents = torch.cat(latents, dim=0)
|
| 351 |
latents.to(device)
|
| 352 |
|
| 353 |
+
images = model_controlnet.generated_ve_inference(
|
| 354 |
prompt=ref_prompt,
|
| 355 |
negative_prompt=style_description_neg,
|
| 356 |
guidance_scale=guidance_scale,
|
| 357 |
num_inference_steps=diffusion_step,
|
| 358 |
+
controlnet_conditioning_scale=controlnet_scale,
|
| 359 |
latents=latents,
|
| 360 |
num_images_per_prompt=len(inf_seeds) + 1,
|
| 361 |
target_prompt=inf_prompt,
|
| 362 |
+
image=depth_image,
|
| 363 |
use_inf_negative_prompt=use_inf_negative_prompt,
|
| 364 |
use_advanced_sampling=use_advanced_sampling
|
| 365 |
)[0][1:]
|
|
|
|
| 368 |
n_col = len(inf_seeds) # ์๋ณธ์ถ๊ฐํ๋ ค๋ฉด + 1
|
| 369 |
|
| 370 |
# make grid
|
| 371 |
+
grid = create_image_grid(images, n_row, n_col)
|
|
|
|
|
|
|
| 372 |
|
| 373 |
return grid
|
| 374 |
|
| 375 |
+
|
| 376 |
description_md = """
|
| 377 |
|
| 378 |
### We introduce `Visual Style Prompting`, which reflects the style of a reference image to the images generated by a pretrained text-to-image diffusion model without finetuning or optimization (e.g., Figure N).
|
| 379 |
### ๐ [[Paper](https://arxiv.org/abs/2402.12974)] | โจ [[Project page](https://curryjung.github.io/VisualStylePrompt)] | โจ [[Code](https://github.com/naver-ai/Visual-Style-Prompting)]
|
|
|
|
| 380 |
---
|
| 381 |
+
### ๐ฅ To try out our vanilla demo,
|
| 382 |
1. Choose a `style reference` from the collection of images below.
|
| 383 |
2. Enter the `text prompt`.
|
| 384 |
3. Choose the `number of outputs`.
|
| 385 |
+
---
|
| 386 |
+
### โจ Visual Style Prompting also works on `ControlNet` which specifies the shape of the results by depthmap or keypoints.
|
| 387 |
+
### โผ๏ธ w/ ControlNet ver does not support user style images.
|
| 388 |
+
### ๐ฅ To try out our demo with ControlNet,
|
| 389 |
+
1. Upload an `image for depth control`. An off-the-shelf model will produce the depthmap from it.
|
| 390 |
+
2. Choose `ControlNet scale` which determines the alignment to the depthmap.
|
| 391 |
+
3. Choose a `style reference` from the collection of images below.
|
| 392 |
+
4. Enter the `text prompt`. (`Empty text` is okay, but a depthmap description helps.)
|
| 393 |
+
5. Choose the `number of outputs`.
|
| 394 |
+
|
| 395 |
+
### ๐ To achieve faster results, we recommend lowering the diffusion steps to 30.
|
| 396 |
### Enjoy ! ๐
|
| 397 |
"""
|
| 398 |
|
| 399 |
iface_style = gr.Interface(
|
| 400 |
fn=style_fn,
|
| 401 |
inputs=[
|
| 402 |
+
gr.components.Image(label="Style Image", type="filepath"),
|
| 403 |
gr.components.Textbox(label='Style name', visible=False),
|
| 404 |
gr.components.Textbox(label="Text prompt", placeholder="Enter Text prompt"),
|
| 405 |
gr.components.Textbox(label="Number of outputs", placeholder="Enter Number of outputs"),
|
| 406 |
gr.components.Slider(minimum=10, maximum=50, step=10, value=50, label="Diffusion steps")
|
| 407 |
],
|
| 408 |
+
outputs=gr.components.Image(label="Generated Image"),
|
| 409 |
title="๐จ Visual Style Prompting (default)",
|
| 410 |
description=description_md,
|
| 411 |
examples=load_example_style(),
|
| 412 |
)
|
| 413 |
|
| 414 |
+
iface_controlnet = gr.Interface(
|
| 415 |
+
fn=controlnet_fn,
|
| 416 |
+
inputs=[
|
| 417 |
+
gr.components.Image(label="Style image"),
|
| 418 |
+
gr.components.Image(label="Depth image"),
|
| 419 |
+
gr.components.Textbox(label='Style name', visible=False),
|
| 420 |
+
gr.components.Textbox(label="Text prompt", placeholder="Enter Text prompt"),
|
| 421 |
+
gr.components.Textbox(label="Number of outputs", placeholder="Enter Number of outputs"),
|
| 422 |
+
gr.components.Slider(minimum=0.5, maximum=10, step=0.5, value=0.5, label="Controlnet scale"),
|
| 423 |
+
gr.components.Slider(minimum=10, maximum=50, step=10, value=50, label="Diffusion steps")
|
| 424 |
+
],
|
| 425 |
+
outputs=gr.components.Image(label="Generated Image"),
|
| 426 |
+
title="๐จ Visual Style Prompting (w/ ControlNet)",
|
| 427 |
+
description=description_md,
|
| 428 |
+
examples=load_example_controlnet(),
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
iface = gr.TabbedInterface([iface_style, iface_controlnet], ["Vanilla", "w/ ControlNet"])
|
| 432 |
+
iface.launch(debug=True)
|