Spaces:
Runtime error
Runtime error
fix
Browse files
app.py
CHANGED
|
@@ -5,24 +5,18 @@ import gradio as gr
|
|
| 5 |
import os, json
|
| 6 |
import numpy as np
|
| 7 |
from PIL import Image
|
| 8 |
-
|
| 9 |
-
from pipelines.pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
|
| 10 |
from pipelines.pipeline_stable_diffusion_xl import StableDiffusionXLPipeline
|
| 11 |
-
from diffusers import ControlNetModel, AutoencoderKL
|
| 12 |
-
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
| 13 |
from random import randint
|
| 14 |
from utils import init_latent
|
| 15 |
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
| 16 |
from diffusers import DDIMScheduler
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
|
| 24 |
-
device = 'cuda'
|
| 25 |
-
torch_dtype = torch.float16
|
| 26 |
def memory_efficient(model):
|
| 27 |
try:
|
| 28 |
model.to(device)
|
|
@@ -37,33 +31,16 @@ def memory_efficient(model):
|
|
| 37 |
model.enable_vae_slicing()
|
| 38 |
except AttributeError:
|
| 39 |
print("enable_vae_slicing is not supported.")
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-depth-sdxl-1.0", torch_dtype=torch_dtype)
|
| 47 |
-
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype)
|
| 48 |
-
|
| 49 |
-
model_controlnet = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 50 |
-
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch_dtype
|
| 51 |
-
)
|
| 52 |
|
| 53 |
model = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch_dtype)
|
| 54 |
-
|
| 55 |
-
print("vae")
|
| 56 |
-
memory_efficient(vae)
|
| 57 |
-
print("control")
|
| 58 |
-
memory_efficient(controlnet)
|
| 59 |
-
print("ControlNet-SDXL")
|
| 60 |
-
memory_efficient(model_controlnet)
|
| 61 |
print("SDXL")
|
| 62 |
memory_efficient(model)
|
| 63 |
|
| 64 |
-
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device)
|
| 65 |
-
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
|
| 66 |
-
|
| 67 |
blip_processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
| 68 |
blip_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch_dtype).to(device)
|
| 69 |
|
|
@@ -75,44 +52,8 @@ def parse_config(config):
|
|
| 75 |
config = json.load(f)
|
| 76 |
return config
|
| 77 |
|
| 78 |
-
def get_depth_map(image):
|
| 79 |
-
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device)
|
| 80 |
-
with torch.no_grad(), torch.autocast(device):
|
| 81 |
-
depth_map = depth_estimator(image).predicted_depth
|
| 82 |
-
|
| 83 |
-
depth_map = torch.nn.functional.interpolate(
|
| 84 |
-
depth_map.unsqueeze(1),
|
| 85 |
-
size=(1024, 1024),
|
| 86 |
-
mode="bicubic",
|
| 87 |
-
align_corners=False,
|
| 88 |
-
)
|
| 89 |
-
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
| 90 |
-
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
| 91 |
-
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
| 92 |
-
image = torch.cat([depth_map] * 3, dim=1)
|
| 93 |
-
|
| 94 |
-
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
| 95 |
-
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
| 96 |
-
return image
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
def get_depth_edge_array(depth_img_path):
|
| 100 |
-
depth_image_tmp = Image.fromarray(depth_img_path)
|
| 101 |
-
|
| 102 |
-
# get depth map
|
| 103 |
-
depth_map = get_depth_map(depth_image_tmp)
|
| 104 |
-
|
| 105 |
-
return depth_map
|
| 106 |
-
|
| 107 |
-
def blip_inf_prompt(image):
|
| 108 |
-
inputs = blip_processor(images=image, return_tensors="pt").to(device, torch.float16)
|
| 109 |
|
| 110 |
-
|
| 111 |
-
generated_text = blip_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 112 |
-
|
| 113 |
-
return generated_text
|
| 114 |
-
|
| 115 |
-
def load_example_controlnet():
|
| 116 |
folder_path = 'assets/ref'
|
| 117 |
examples = []
|
| 118 |
for filename in os.listdir(folder_path):
|
|
@@ -125,33 +66,22 @@ def load_example_controlnet():
|
|
| 125 |
config = parse_config(config_path)
|
| 126 |
inf_object_name = config["inference_info"]["inf_object_list"][0]
|
| 127 |
|
| 128 |
-
|
| 129 |
-
image_info = [image_path, canny_path, style_name, inf_object_name, 1, 0.5, 50]
|
| 130 |
-
|
| 131 |
examples.append(image_info)
|
| 132 |
|
| 133 |
return examples
|
| 134 |
|
| 135 |
-
def
|
| 136 |
-
|
| 137 |
-
examples = []
|
| 138 |
-
for filename in os.listdir(folder_path):
|
| 139 |
-
if filename.endswith((".png")):
|
| 140 |
-
image_path = os.path.join(folder_path, filename)
|
| 141 |
-
image_name = os.path.basename(image_path)
|
| 142 |
-
style_name = image_name.split('_')[1]
|
| 143 |
-
|
| 144 |
-
config_path = './config/{}.json'.format(style_name)
|
| 145 |
-
config = parse_config(config_path)
|
| 146 |
-
inf_object_name = config["inference_info"]["inf_object_list"][0]
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
|
| 151 |
-
return
|
| 152 |
|
| 153 |
@spaces.GPU
|
| 154 |
-
def style_fn(image_path, style_name, content_text, output_number, diffusion_step=50):
|
|
|
|
| 155 |
user_image_flag = not style_name.strip() # empty
|
| 156 |
|
| 157 |
if not user_image_flag:
|
|
@@ -272,131 +202,23 @@ def style_fn(image_path, style_name, content_text, output_number, diffusion_step
|
|
| 272 |
)[0][1:]
|
| 273 |
|
| 274 |
n_row = 1
|
| 275 |
-
n_col = len(inf_seeds)
|
| 276 |
|
| 277 |
# make grid
|
| 278 |
grid = create_image_grid(images, n_row, n_col, padding=10)
|
| 279 |
|
| 280 |
return grid
|
| 281 |
|
| 282 |
-
@spaces.GPU
|
| 283 |
-
def controlnet_fn(image_path, depth_image_path, style_name, content_text, output_number, controlnet_scale=0.5, diffusion_step=50):
|
| 284 |
-
config_path = './config/{}.json'.format(style_name)
|
| 285 |
-
config = parse_config(config_path)
|
| 286 |
-
|
| 287 |
-
inf_object = content_text
|
| 288 |
-
inf_seeds = [randint(0, 10**10) for _ in range(int(output_number))]
|
| 289 |
-
# inf_seeds = [i for i in range(int(output_number))]
|
| 290 |
-
|
| 291 |
-
activate_layer_indices_list = config['inference_info']['activate_layer_indices_list']
|
| 292 |
-
activate_step_indices_list = config['inference_info']['activate_step_indices_list']
|
| 293 |
-
ref_seed = config['reference_info']['ref_seeds'][0]
|
| 294 |
-
|
| 295 |
-
attn_map_save_steps = config['inference_info']['attn_map_save_steps']
|
| 296 |
-
guidance_scale = config['guidance_scale']
|
| 297 |
-
use_inf_negative_prompt = config['inference_info']['use_negative_prompt']
|
| 298 |
-
|
| 299 |
-
style_name = config["style_name_list"][0]
|
| 300 |
-
|
| 301 |
-
ref_object = config["reference_info"]["ref_object_list"][0]
|
| 302 |
-
ref_with_style_description = config['reference_info']['with_style_description']
|
| 303 |
-
inf_with_style_description = config['inference_info']['with_style_description']
|
| 304 |
-
|
| 305 |
-
use_shared_attention = config['inference_info']['use_shared_attention']
|
| 306 |
-
adain_queries = config['inference_info']['adain_queries']
|
| 307 |
-
adain_keys = config['inference_info']['adain_keys']
|
| 308 |
-
adain_values = config['inference_info']['adain_values']
|
| 309 |
-
|
| 310 |
-
use_advanced_sampling = config['inference_info']['use_advanced_sampling']
|
| 311 |
-
|
| 312 |
-
#get canny edge array
|
| 313 |
-
depth_image = get_depth_edge_array(depth_image_path)
|
| 314 |
-
|
| 315 |
-
style_description_pos, style_description_neg = STYLE_DESCRIPTION_DICT[style_name][0], \
|
| 316 |
-
STYLE_DESCRIPTION_DICT[style_name][1]
|
| 317 |
-
|
| 318 |
-
# Inference
|
| 319 |
-
with torch.inference_mode():
|
| 320 |
-
grid = None
|
| 321 |
-
if ref_with_style_description:
|
| 322 |
-
ref_prompt = style_description_pos.replace("{object}", ref_object)
|
| 323 |
-
else:
|
| 324 |
-
ref_prompt = ref_object
|
| 325 |
-
|
| 326 |
-
if inf_with_style_description:
|
| 327 |
-
inf_prompt = style_description_pos.replace("{object}", inf_object)
|
| 328 |
-
else:
|
| 329 |
-
inf_prompt = inf_object
|
| 330 |
-
|
| 331 |
-
for activate_layer_indices in activate_layer_indices_list:
|
| 332 |
-
|
| 333 |
-
for activate_step_indices in activate_step_indices_list:
|
| 334 |
-
|
| 335 |
-
str_activate_layer, str_activate_step = model_controlnet.activate_layer(
|
| 336 |
-
activate_layer_indices=activate_layer_indices,
|
| 337 |
-
attn_map_save_steps=attn_map_save_steps,
|
| 338 |
-
activate_step_indices=activate_step_indices,
|
| 339 |
-
use_shared_attention=use_shared_attention,
|
| 340 |
-
adain_queries=adain_queries,
|
| 341 |
-
adain_keys=adain_keys,
|
| 342 |
-
adain_values=adain_values,
|
| 343 |
-
)
|
| 344 |
-
|
| 345 |
-
# ref_latent = model_controlnet.get_init_latent(ref_seed, precomputed_path=None)
|
| 346 |
-
ref_latent = init_latent(model_controlnet, device_name=device, dtype=torch_dtype, seed=ref_seed)
|
| 347 |
-
latents = [ref_latent]
|
| 348 |
-
|
| 349 |
-
for inf_seed in inf_seeds:
|
| 350 |
-
# latents.append(model_controlnet.get_init_latent(inf_seed, precomputed_path=None))
|
| 351 |
-
inf_latent = init_latent(model_controlnet, device_name=device, dtype=torch_dtype, seed=inf_seed)
|
| 352 |
-
latents.append(inf_latent)
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
latents = torch.cat(latents, dim=0)
|
| 356 |
-
latents.to(device)
|
| 357 |
-
|
| 358 |
-
images = model_controlnet.generated_ve_inference(
|
| 359 |
-
prompt=ref_prompt,
|
| 360 |
-
negative_prompt=style_description_neg,
|
| 361 |
-
guidance_scale=guidance_scale,
|
| 362 |
-
num_inference_steps=diffusion_step,
|
| 363 |
-
controlnet_conditioning_scale=controlnet_scale,
|
| 364 |
-
latents=latents,
|
| 365 |
-
num_images_per_prompt=len(inf_seeds) + 1,
|
| 366 |
-
target_prompt=inf_prompt,
|
| 367 |
-
image=depth_image,
|
| 368 |
-
use_inf_negative_prompt=use_inf_negative_prompt,
|
| 369 |
-
use_advanced_sampling=use_advanced_sampling
|
| 370 |
-
)[0][1:]
|
| 371 |
-
|
| 372 |
-
n_row = 1
|
| 373 |
-
n_col = len(inf_seeds) # μλ³ΈμΆκ°νλ €λ©΄ + 1
|
| 374 |
-
|
| 375 |
-
# make grid
|
| 376 |
-
grid = create_image_grid(images, n_row, n_col)
|
| 377 |
-
|
| 378 |
-
return grid
|
| 379 |
-
|
| 380 |
-
|
| 381 |
description_md = """
|
| 382 |
|
| 383 |
### We introduce `Visual Style Prompting`, which reflects the style of a reference image to the images generated by a pretrained text-to-image diffusion model without finetuning or optimization (e.g., Figure N).
|
| 384 |
### π [[Paper](https://arxiv.org/abs/2402.12974)] | β¨ [[Project page](https://curryjung.github.io/VisualStylePrompt)] | β¨ [[Code](https://github.com/naver-ai/Visual-Style-Prompting)]
|
|
|
|
| 385 |
---
|
| 386 |
-
### π To better reflect the style of a user's image, the higher the resolution, the better.
|
| 387 |
### π₯ To try out our vanilla demo,
|
| 388 |
1. Choose a `style reference` from the collection of images below.
|
| 389 |
2. Enter the `text prompt`.
|
| 390 |
3. Choose the `number of outputs`.
|
| 391 |
-
---
|
| 392 |
-
### β¨ Visual Style Prompting also works on `ControlNet` which specifies the shape of the results by depthmap or keypoints.
|
| 393 |
-
### βΌοΈ w/ ControlNet ver does not support user style images.
|
| 394 |
-
### π₯ To try out our demo with ControlNet,
|
| 395 |
-
1. Upload an `image for depth control`. An off-the-shelf model will produce the depthmap from it.
|
| 396 |
-
2. Choose `ControlNet scale` which determines the alignment to the depthmap.
|
| 397 |
-
3. Choose a `style reference` from the collection of images below.
|
| 398 |
-
4. Enter the `text prompt`. (`Empty text` is okay, but a depthmap description helps.)
|
| 399 |
-
5. Choose the `number of outputs`.
|
| 400 |
|
| 401 |
### π To achieve faster results, we recommend lowering the diffusion steps to 30.
|
| 402 |
### Enjoy ! π
|
|
@@ -417,22 +239,4 @@ iface_style = gr.Interface(
|
|
| 417 |
examples=load_example_style(),
|
| 418 |
)
|
| 419 |
|
| 420 |
-
|
| 421 |
-
fn=controlnet_fn,
|
| 422 |
-
inputs=[
|
| 423 |
-
gr.components.Image(label="Style image"),
|
| 424 |
-
gr.components.Image(label="Depth image"),
|
| 425 |
-
gr.components.Textbox(label='Style name', visible=False),
|
| 426 |
-
gr.components.Textbox(label="Text prompt", placeholder="Enter Text prompt"),
|
| 427 |
-
gr.components.Textbox(label="Number of outputs", placeholder="Enter Number of outputs"),
|
| 428 |
-
gr.components.Slider(minimum=0.5, maximum=10, step=0.5, value=0.5, label="Controlnet scale"),
|
| 429 |
-
gr.components.Slider(minimum=10, maximum=50, step=10, value=50, label="Diffusion steps")
|
| 430 |
-
],
|
| 431 |
-
outputs=gr.components.Image(label="Generated Image"),
|
| 432 |
-
title="π¨ Visual Style Prompting (w/ ControlNet)",
|
| 433 |
-
description=description_md,
|
| 434 |
-
examples=load_example_controlnet(),
|
| 435 |
-
)
|
| 436 |
-
|
| 437 |
-
iface = gr.TabbedInterface([iface_style, iface_controlnet], ["Vanilla", "w/ ControlNet"])
|
| 438 |
-
iface.launch(debug=True)
|
|
|
|
| 5 |
import os, json
|
| 6 |
import numpy as np
|
| 7 |
from PIL import Image
|
|
|
|
|
|
|
| 8 |
from pipelines.pipeline_stable_diffusion_xl import StableDiffusionXLPipeline
|
|
|
|
|
|
|
| 9 |
from random import randint
|
| 10 |
from utils import init_latent
|
| 11 |
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
| 12 |
from diffusers import DDIMScheduler
|
| 13 |
|
| 14 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 15 |
+
if device == 'cpu':
|
| 16 |
+
torch_dtype = torch.float32
|
| 17 |
+
else:
|
| 18 |
+
torch_dtype = torch.float16
|
| 19 |
|
|
|
|
|
|
|
| 20 |
def memory_efficient(model):
|
| 21 |
try:
|
| 22 |
model.to(device)
|
|
|
|
| 31 |
model.enable_vae_slicing()
|
| 32 |
except AttributeError:
|
| 33 |
print("enable_vae_slicing is not supported.")
|
| 34 |
+
if device == 'cuda':
|
| 35 |
+
try:
|
| 36 |
+
model.enable_xformers_memory_efficient_attention()
|
| 37 |
+
except AttributeError:
|
| 38 |
+
print("enable_xformers_memory_efficient_attention is not supported.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
model = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch_dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
print("SDXL")
|
| 42 |
memory_efficient(model)
|
| 43 |
|
|
|
|
|
|
|
|
|
|
| 44 |
blip_processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
| 45 |
blip_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch_dtype).to(device)
|
| 46 |
|
|
|
|
| 52 |
config = json.load(f)
|
| 53 |
return config
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
def load_example_style():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
folder_path = 'assets/ref'
|
| 58 |
examples = []
|
| 59 |
for filename in os.listdir(folder_path):
|
|
|
|
| 66 |
config = parse_config(config_path)
|
| 67 |
inf_object_name = config["inference_info"]["inf_object_list"][0]
|
| 68 |
|
| 69 |
+
image_info = [image_path, style_name, inf_object_name, 1, 50]
|
|
|
|
|
|
|
| 70 |
examples.append(image_info)
|
| 71 |
|
| 72 |
return examples
|
| 73 |
|
| 74 |
+
def blip_inf_prompt(image):
|
| 75 |
+
inputs = blip_processor(images=image, return_tensors="pt").to(device, torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
generated_ids = blip_model.generate(**inputs)
|
| 78 |
+
generated_text = blip_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 79 |
|
| 80 |
+
return generated_text
|
| 81 |
|
| 82 |
@spaces.GPU
|
| 83 |
+
def style_fn(image_path, style_name, content_text, output_number=1, diffusion_step=50):
|
| 84 |
+
|
| 85 |
user_image_flag = not style_name.strip() # empty
|
| 86 |
|
| 87 |
if not user_image_flag:
|
|
|
|
| 202 |
)[0][1:]
|
| 203 |
|
| 204 |
n_row = 1
|
| 205 |
+
n_col = len(inf_seeds) + 1 # μλ³ΈμΆκ°νλ €λ©΄ + 1
|
| 206 |
|
| 207 |
# make grid
|
| 208 |
grid = create_image_grid(images, n_row, n_col, padding=10)
|
| 209 |
|
| 210 |
return grid
|
| 211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
description_md = """
|
| 213 |
|
| 214 |
### We introduce `Visual Style Prompting`, which reflects the style of a reference image to the images generated by a pretrained text-to-image diffusion model without finetuning or optimization (e.g., Figure N).
|
| 215 |
### π [[Paper](https://arxiv.org/abs/2402.12974)] | β¨ [[Project page](https://curryjung.github.io/VisualStylePrompt)] | β¨ [[Code](https://github.com/naver-ai/Visual-Style-Prompting)]
|
| 216 |
+
### π₯ [[w/ Controlnet ver](https://huggingface.co/spaces/naver-ai/VisualStylePrompting_Controlnet)]
|
| 217 |
---
|
|
|
|
| 218 |
### π₯ To try out our vanilla demo,
|
| 219 |
1. Choose a `style reference` from the collection of images below.
|
| 220 |
2. Enter the `text prompt`.
|
| 221 |
3. Choose the `number of outputs`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
### π To achieve faster results, we recommend lowering the diffusion steps to 30.
|
| 224 |
### Enjoy ! π
|
|
|
|
| 239 |
examples=load_example_style(),
|
| 240 |
)
|
| 241 |
|
| 242 |
+
iface_style.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|