nazdridoy commited on
Commit
c1bee18
Β·
verified Β·
1 Parent(s): 06d13ab

refactor(core): modularize application structure

Browse files

- [remove] Remove core chat/image logic and direct Gradio UI definitions (app.py:chat_respond, generate_image, validate_dimensions, handle_chat_submit, on_generate_image)
- [refactor] Refactor app.py to orchestrate the application via create_app(), connecting modular UI and logic handlers (app.py:create_app(), 27-38)
- [add] Introduce chat and image handler files to encapsulate chat and image generation logic, integrating utils helpers (chat_handler.py:chat_respond(), image_handler.py:generate_image())
- [add] Create modular Gradio UI definition (ui_components.py)
- [add] Add utility file to centralize helper functions and configuration constants (utils.py)

Files changed (5) hide show
  1. app.py +30 -494
  2. chat_handler.py +132 -0
  3. image_handler.py +124 -0
  4. ui_components.py +291 -0
  5. utils.py +116 -0
app.py CHANGED
@@ -1,507 +1,43 @@
1
- import gradio as gr
2
- import os
3
- from huggingface_hub import InferenceClient
4
- from huggingface_hub.errors import HfHubHTTPError
5
- from hf_token_utils import get_proxy_token, report_token_status
6
- import PIL.Image
7
- import io
8
-
9
-
10
- def chat_respond(
11
- message,
12
- history: list[dict[str, str]],
13
- system_message,
14
- model_name,
15
- max_tokens,
16
- temperature,
17
- top_p,
18
- ):
19
- """
20
- Chat completion function using HF-Inferoxy token management.
21
- """
22
- # Get proxy API key from environment variable (set in HuggingFace Space secrets)
23
- proxy_api_key = os.getenv("PROXY_KEY")
24
- if not proxy_api_key:
25
- yield "❌ Error: PROXY_KEY not found in environment variables. Please set it in your HuggingFace Space secrets."
26
- return
27
-
28
- try:
29
- # Get token from HF-Inferoxy proxy server
30
- print(f"πŸ”‘ Chat: Requesting token from proxy...")
31
- token, token_id = get_proxy_token(api_key=proxy_api_key)
32
- print(f"βœ… Chat: Got token: {token_id}")
33
-
34
- # Parse model name and provider if specified
35
- if ":" in model_name:
36
- model, provider = model_name.split(":", 1)
37
- else:
38
- model = model_name
39
- provider = None
40
-
41
- print(f"πŸ€– Chat: Using model='{model}', provider='{provider if provider else 'auto'}'")
42
-
43
- # Prepare messages first
44
- messages = [{"role": "system", "content": system_message}]
45
- messages.extend(history)
46
- messages.append({"role": "user", "content": message})
47
-
48
- print(f"πŸ’¬ Chat: Prepared {len(messages)} messages, creating client...")
49
-
50
- # Create client with provider (auto if none specified) and always pass model
51
- client = InferenceClient(
52
- provider=provider if provider else "auto",
53
- api_key=token
54
- )
55
-
56
- print(f"πŸš€ Chat: Client created, starting inference...")
57
-
58
- chat_completion_kwargs = {
59
- "model": model,
60
- "messages": messages,
61
- "max_tokens": max_tokens,
62
- "stream": True,
63
- "temperature": temperature,
64
- "top_p": top_p,
65
- }
66
-
67
- response = ""
68
-
69
- print(f"πŸ“‘ Chat: Making streaming request...")
70
- stream = client.chat_completion(**chat_completion_kwargs)
71
- print(f"πŸ”„ Chat: Got stream, starting to iterate...")
72
 
73
- for message in stream:
74
- choices = message.choices
75
- token_content = ""
76
- if len(choices) and choices[0].delta.content:
77
- token_content = choices[0].delta.content
78
-
79
- response += token_content
80
- yield response
81
-
82
- # Report successful token usage
83
- report_token_status(token_id, "success", api_key=proxy_api_key)
84
-
85
- except HfHubHTTPError as e:
86
- # Report HF Hub errors
87
- if 'token_id' in locals():
88
- report_token_status(token_id, "error", str(e), api_key=proxy_api_key)
89
- yield f"❌ HuggingFace API Error: {str(e)}"
90
-
91
- except Exception as e:
92
- # Report other errors
93
- if 'token_id' in locals():
94
- report_token_status(token_id, "error", str(e), api_key=proxy_api_key)
95
- yield f"❌ Unexpected Error: {str(e)}"
96
 
97
 
98
- def generate_image(
99
- prompt: str,
100
- model_name: str,
101
- provider: str,
102
- negative_prompt: str = "",
103
- width: int = 1024,
104
- height: int = 1024,
105
- num_inference_steps: int = 20,
106
- guidance_scale: float = 7.5,
107
- seed: int = -1,
108
- ):
109
- """
110
- Generate an image using the specified model and provider through HF-Inferoxy.
111
- """
112
- # Get proxy API key from environment variable (set in HuggingFace Space secrets)
113
- proxy_api_key = os.getenv("PROXY_KEY")
114
- if not proxy_api_key:
115
- return None, "❌ Error: PROXY_KEY not found in environment variables. Please set it in your HuggingFace Space secrets."
116
 
117
- try:
118
- # Get token from HF-Inferoxy proxy server
119
- print(f"πŸ”‘ Image: Requesting token from proxy...")
120
- token, token_id = get_proxy_token(api_key=proxy_api_key)
121
- print(f"βœ… Image: Got token: {token_id}")
122
-
123
- print(f"🎨 Image: Using model='{model_name}', provider='{provider}'")
124
-
125
- # Create client with specified provider
126
- client = InferenceClient(
127
- provider=provider,
128
- api_key=token
129
- )
130
-
131
- print(f"πŸš€ Image: Client created, preparing generation params...")
132
-
133
- # Prepare generation parameters
134
- generation_params = {
135
- "model": model_name,
136
- "prompt": prompt,
137
- "width": width,
138
- "height": height,
139
- "num_inference_steps": num_inference_steps,
140
- "guidance_scale": guidance_scale,
141
- }
142
-
143
- # Add optional parameters if provided
144
- if negative_prompt:
145
- generation_params["negative_prompt"] = negative_prompt
146
- if seed != -1:
147
- generation_params["seed"] = seed
148
-
149
- print(f"πŸ“ Image: Dimensions: {width}x{height}, steps: {num_inference_steps}, guidance: {guidance_scale}")
150
- print(f"πŸ“‘ Image: Making generation request...")
151
-
152
- # Generate image
153
- image = client.text_to_image(**generation_params)
154
 
155
- print(f"πŸ–ΌοΈ Image: Generation completed! Image type: {type(image)}")
 
156
 
157
- # Report successful token usage
158
- report_token_status(token_id, "success", api_key=proxy_api_key)
159
-
160
- return image, f"βœ… Image generated successfully using {model_name} on {provider}!"
161
-
162
- except HfHubHTTPError as e:
163
- # Report HF Hub errors
164
- if 'token_id' in locals():
165
- report_token_status(token_id, "error", str(e), api_key=proxy_api_key)
166
- return None, f"❌ HuggingFace API Error: {str(e)}"
167
-
168
- except Exception as e:
169
- # Report other errors
170
- if 'token_id' in locals():
171
- report_token_status(token_id, "error", str(e), api_key=proxy_api_key)
172
- return None, f"❌ Unexpected Error: {str(e)}"
173
-
174
-
175
- def validate_dimensions(width, height):
176
- """Validate that dimensions are divisible by 8 (required by most diffusion models)"""
177
- if width % 8 != 0 or height % 8 != 0:
178
- return False, "Width and height must be divisible by 8"
179
- return True, ""
180
-
181
-
182
- # Create the main Gradio interface with tabs
183
- with gr.Blocks(title="HF-Inferoxy AI Hub", theme=gr.themes.Soft()) as demo:
184
-
185
- # Main header
186
- gr.Markdown("""
187
- # πŸš€ HF-Inferoxy AI Hub
188
-
189
- A comprehensive AI platform combining chat and image generation capabilities with intelligent token management through HF-Inferoxy.
190
-
191
- **Features:**
192
- - πŸ’¬ **Smart Chat**: Conversational AI with streaming responses
193
- - 🎨 **Image Generation**: Text-to-image creation with multiple providers
194
- - πŸ”„ **Intelligent Token Management**: Automatic token rotation and error handling
195
- - 🌐 **Multi-Provider Support**: Works with HF Inference, Cerebras, Cohere, Groq, Together, Fal.ai, and more
196
- """)
197
-
198
- with gr.Tabs() as tabs:
199
-
200
- # ==================== CHAT TAB ====================
201
- with gr.Tab("πŸ’¬ Chat Assistant", id="chat"):
202
- # Chat interface at the top - most prominent
203
- chatbot_display = gr.Chatbot(
204
- label="Chat",
205
- type="messages",
206
- height=800,
207
- show_copy_button=True
208
- )
209
 
210
- # Chat input
211
- with gr.Row():
212
- chat_input = gr.Textbox(
213
- placeholder="Type your message here...",
214
- label="Message",
215
- scale=4,
216
- container=False
217
- )
218
- chat_submit = gr.Button("Send", variant="primary", scale=1)
219
 
220
- # Configuration options below the chat
221
- with gr.Row():
222
- with gr.Column(scale=1):
223
- chat_model_name = gr.Textbox(
224
- value="openai/gpt-oss-20b",
225
- label="Model Name",
226
- placeholder="e.g., openai/gpt-oss-20b or openai/gpt-oss-20b:fireworks-ai"
227
- )
228
- chat_system_message = gr.Textbox(
229
- value="You are a helpful and friendly AI assistant. Provide clear, accurate, and helpful responses.",
230
- label="System Message",
231
- lines=2,
232
- placeholder="Define the assistant's personality and behavior..."
233
- )
234
-
235
- with gr.Column(scale=1):
236
- chat_max_tokens = gr.Slider(
237
- minimum=1, maximum=4096, value=1024, step=1,
238
- label="Max New Tokens"
239
- )
240
- chat_temperature = gr.Slider(
241
- minimum=0.1, maximum=2.0, value=0.7, step=0.1,
242
- label="Temperature"
243
- )
244
- chat_top_p = gr.Slider(
245
- minimum=0.1, maximum=1.0, value=0.95, step=0.05,
246
- label="Top-p (nucleus sampling)"
247
- )
248
-
249
- # Configuration tips below the chat
250
- with gr.Row():
251
- with gr.Column():
252
- gr.Markdown("""
253
- ### πŸ’‘ Chat Tips
254
-
255
- **Model Format:**
256
- - Single model: `openai/gpt-oss-20b` (uses auto provider)
257
- - With provider: `openai/gpt-oss-20b:fireworks-ai`
258
-
259
- **Popular Models:**
260
- - `openai/gpt-oss-20b` - Fast general purpose
261
- - `meta-llama/Llama-2-7b-chat-hf` - Chat optimized
262
- - `microsoft/DialoGPT-medium` - Conversation
263
- - `google/flan-t5-base` - Instruction following
264
- """)
265
-
266
- with gr.Column():
267
- gr.Markdown("""
268
- ### πŸš€ Popular Providers
269
-
270
- - **auto** - Let HF choose best provider (default)
271
- - **fireworks-ai** - Fast and reliable
272
- - **cerebras** - High performance
273
- - **groq** - Ultra-fast inference
274
- - **together** - Wide model support
275
- - **cohere** - Advanced language models
276
-
277
- **Examples:**
278
- - `openai/gpt-oss-20b` (auto provider)
279
- - `openai/gpt-oss-20b:fireworks-ai` (specific provider)
280
- """)
281
-
282
- # Chat functionality
283
- def handle_chat_submit(message, history, system_msg, model_name, max_tokens, temperature, top_p):
284
- if not message.strip():
285
- return history, ""
286
-
287
- # Add user message to history
288
- history = history + [{"role": "user", "content": message}]
289
-
290
- # Generate response
291
- response_generator = chat_respond(
292
- message,
293
- history[:-1], # Don't include the current message in history for the function
294
- system_msg,
295
- model_name,
296
- max_tokens,
297
- temperature,
298
- top_p
299
- )
300
-
301
- # Get the final response
302
- assistant_response = ""
303
- for partial_response in response_generator:
304
- assistant_response = partial_response
305
-
306
- # Add assistant response to history
307
- history = history + [{"role": "assistant", "content": assistant_response}]
308
-
309
- return history, ""
310
-
311
- # Connect chat events
312
- chat_submit.click(
313
- fn=handle_chat_submit,
314
- inputs=[chat_input, chatbot_display, chat_system_message, chat_model_name,
315
- chat_max_tokens, chat_temperature, chat_top_p],
316
- outputs=[chatbot_display, chat_input]
317
- )
318
-
319
- chat_input.submit(
320
- fn=handle_chat_submit,
321
- inputs=[chat_input, chatbot_display, chat_system_message, chat_model_name,
322
- chat_max_tokens, chat_temperature, chat_top_p],
323
- outputs=[chatbot_display, chat_input]
324
- )
325
-
326
- # ==================== IMAGE GENERATION TAB ====================
327
- with gr.Tab("🎨 Image Generator", id="image"):
328
- with gr.Row():
329
- with gr.Column(scale=2):
330
- # Image output
331
- output_image = gr.Image(
332
- label="Generated Image",
333
- type="pil",
334
- height=600,
335
- show_download_button=True
336
- )
337
- status_text = gr.Textbox(
338
- label="Generation Status",
339
- interactive=False,
340
- lines=2
341
- )
342
-
343
- with gr.Column(scale=1):
344
- # Model and provider inputs
345
- with gr.Group():
346
- gr.Markdown("**πŸ€– Model & Provider**")
347
- img_model_name = gr.Textbox(
348
- value="Qwen/Qwen-Image",
349
- label="Model Name",
350
- placeholder="e.g., Qwen/Qwen-Image or stabilityai/stable-diffusion-xl-base-1.0"
351
- )
352
- img_provider = gr.Dropdown(
353
- choices=["hf-inference", "fal-ai", "nebius", "nscale", "replicate", "together"],
354
- value="fal-ai",
355
- label="Provider",
356
- interactive=True
357
- )
358
-
359
- # Generation parameters
360
- with gr.Group():
361
- gr.Markdown("**πŸ“ Prompts**")
362
- img_prompt = gr.Textbox(
363
- value="A beautiful landscape with mountains and a lake at sunset, photorealistic, 8k, highly detailed",
364
- label="Prompt",
365
- lines=3,
366
- placeholder="Describe the image you want to generate..."
367
- )
368
- img_negative_prompt = gr.Textbox(
369
- value="blurry, low quality, distorted, deformed, ugly, bad anatomy",
370
- label="Negative Prompt",
371
- lines=2,
372
- placeholder="Describe what you DON'T want in the image..."
373
- )
374
-
375
- with gr.Group():
376
- gr.Markdown("**βš™οΈ Generation Settings**")
377
- with gr.Row():
378
- img_width = gr.Slider(
379
- minimum=256, maximum=2048, value=1024, step=64,
380
- label="Width", info="Must be divisible by 8"
381
- )
382
- img_height = gr.Slider(
383
- minimum=256, maximum=2048, value=1024, step=64,
384
- label="Height", info="Must be divisible by 8"
385
- )
386
-
387
- with gr.Row():
388
- img_steps = gr.Slider(
389
- minimum=10, maximum=100, value=20, step=1,
390
- label="Inference Steps", info="More steps = better quality"
391
- )
392
- img_guidance = gr.Slider(
393
- minimum=1.0, maximum=20.0, value=7.5, step=0.5,
394
- label="Guidance Scale", info="How closely to follow prompt"
395
- )
396
-
397
- img_seed = gr.Slider(
398
- minimum=-1, maximum=999999, value=-1, step=1,
399
- label="Seed", info="-1 for random"
400
- )
401
-
402
- # Generate button
403
- generate_btn = gr.Button(
404
- "🎨 Generate Image",
405
- variant="primary",
406
- size="lg",
407
- scale=2
408
- )
409
-
410
- # Quick model presets
411
- with gr.Group():
412
- gr.Markdown("**🎯 Popular Presets**")
413
- preset_buttons = []
414
- presets = [
415
- ("Qwen (Fal.ai)", "Qwen/Qwen-Image", "fal-ai"),
416
- ("Qwen (Replicate)", "Qwen/Qwen-Image", "replicate"),
417
- ("FLUX.1 (Nebius)", "black-forest-labs/FLUX.1-dev", "nebius"),
418
- ("SDXL (HF)", "stabilityai/stable-diffusion-xl-base-1.0", "hf-inference"),
419
- ]
420
-
421
- for name, model, provider in presets:
422
- btn = gr.Button(name, size="sm")
423
- btn.click(
424
- lambda m=model, p=provider: (m, p),
425
- outputs=[img_model_name, img_provider]
426
- )
427
-
428
- # Examples for image generation
429
- with gr.Group():
430
- gr.Markdown("**🌟 Example Prompts**")
431
- img_examples = gr.Examples(
432
- examples=[
433
- ["A majestic dragon flying over a medieval castle, epic fantasy art, detailed, 8k"],
434
- ["A serene Japanese garden with cherry blossoms, zen atmosphere, peaceful, high quality"],
435
- ["A futuristic cityscape with flying cars and neon lights, cyberpunk style, cinematic"],
436
- ["A cute robot cat playing with yarn, adorable, cartoon style, vibrant colors"],
437
- ["A magical forest with glowing mushrooms and fairy lights, fantasy, ethereal beauty"],
438
- ["Portrait of a wise old wizard with flowing robes, magical aura, fantasy character art"],
439
- ["A cozy coffee shop on a rainy day, warm lighting, peaceful atmosphere, detailed"],
440
- ["An astronaut floating in space with Earth in background, photorealistic, stunning"]
441
- ],
442
- inputs=img_prompt
443
- )
444
-
445
- # Event handlers for image generation
446
- def on_generate_image(prompt_val, model_val, provider_val, negative_prompt_val, width_val, height_val, steps_val, guidance_val, seed_val):
447
- # Validate dimensions
448
- is_valid, error_msg = validate_dimensions(width_val, height_val)
449
- if not is_valid:
450
- return None, f"❌ Validation Error: {error_msg}"
451
 
452
- # Generate image
453
- return generate_image(
454
- prompt=prompt_val,
455
- model_name=model_val,
456
- provider=provider_val,
457
- negative_prompt=negative_prompt_val,
458
- width=width_val,
459
- height=height_val,
460
- num_inference_steps=steps_val,
461
- guidance_scale=guidance_val,
462
- seed=seed_val
463
- )
464
-
465
- # Connect image generation events
466
- generate_btn.click(
467
- fn=on_generate_image,
468
- inputs=[
469
- img_prompt, img_model_name, img_provider, img_negative_prompt,
470
- img_width, img_height, img_steps, img_guidance, img_seed
471
- ],
472
- outputs=[output_image, status_text]
473
- )
474
-
475
- # Footer with helpful information
476
- gr.Markdown("""
477
- ---
478
- ### πŸ“š How to Use
479
-
480
- **Chat Tab:**
481
- - Enter your message and customize the AI's behavior with system messages
482
- - Choose models and providers using the format `model:provider`
483
- - Adjust temperature for creativity and top-p for response diversity
484
-
485
- **Image Tab:**
486
- - Write detailed prompts describing your desired image
487
- - Use negative prompts to avoid unwanted elements
488
- - Experiment with different models and providers for varied styles
489
- - Higher inference steps = better quality but slower generation
490
-
491
- **Supported Providers:**
492
- - **fal-ai**: High-quality image generation (default for images)
493
- - **hf-inference**: Core API with comprehensive model support
494
- - **cerebras**: High-performance inference
495
- - **cohere**: Advanced language models with multilingual support
496
- - **groq**: Ultra-fast inference, optimized for speed
497
- - **together**: Collaborative AI hosting, wide model support
498
- - **nebius**: Cloud-native services with enterprise features
499
- - **nscale**: Optimized inference performance
500
- - **replicate**: Collaborative AI hosting
501
 
502
- **Built with ❀️ using [HF-Inferoxy](https://nazdridoy.github.io/hf-inferoxy/) for intelligent token management**
503
- """)
504
 
505
 
506
  if __name__ == "__main__":
507
- demo.launch()
 
 
1
+ """
2
+ HF-Inferoxy AI Hub - Main application entry point.
3
+ A comprehensive AI platform with chat and image generation capabilities.
4
+ """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ import gradio as gr
7
+ from chat_handler import handle_chat_submit
8
+ from image_handler import handle_image_generation
9
+ from ui_components import (
10
+ create_main_header,
11
+ create_chat_tab,
12
+ create_image_tab,
13
+ create_footer
14
+ )
15
+ from utils import get_gradio_theme
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
 
18
+ def create_app():
19
+ """Create and configure the main Gradio application."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ # Create the main Gradio interface with tabs
22
+ with gr.Blocks(title="HF-Inferoxy AI Hub", theme=get_gradio_theme()) as demo:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
+ # Main header
25
+ create_main_header()
26
 
27
+ with gr.Tabs() as tabs:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
+ # Chat tab
30
+ create_chat_tab(handle_chat_submit)
 
 
 
 
 
 
 
31
 
32
+ # Image generation tab
33
+ create_image_tab(handle_image_generation)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
+ # Footer with helpful information
36
+ create_footer()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ return demo
 
39
 
40
 
41
  if __name__ == "__main__":
42
+ app = create_app()
43
+ app.launch()
chat_handler.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Chat functionality handler for HF-Inferoxy AI Hub.
3
+ Handles chat completion requests with streaming responses.
4
+ """
5
+
6
+ import os
7
+ from huggingface_hub import InferenceClient
8
+ from huggingface_hub.errors import HfHubHTTPError
9
+ from hf_token_utils import get_proxy_token, report_token_status
10
+ from utils import (
11
+ validate_proxy_key,
12
+ parse_model_and_provider,
13
+ format_error_message
14
+ )
15
+
16
+
17
+ def chat_respond(
18
+ message,
19
+ history: list[dict[str, str]],
20
+ system_message,
21
+ model_name,
22
+ max_tokens,
23
+ temperature,
24
+ top_p,
25
+ ):
26
+ """
27
+ Chat completion function using HF-Inferoxy token management.
28
+ """
29
+ # Validate proxy API key
30
+ is_valid, error_msg = validate_proxy_key()
31
+ if not is_valid:
32
+ yield error_msg
33
+ return
34
+
35
+ proxy_api_key = os.getenv("PROXY_KEY")
36
+
37
+ try:
38
+ # Get token from HF-Inferoxy proxy server
39
+ print(f"πŸ”‘ Chat: Requesting token from proxy...")
40
+ token, token_id = get_proxy_token(api_key=proxy_api_key)
41
+ print(f"βœ… Chat: Got token: {token_id}")
42
+
43
+ # Parse model name and provider if specified
44
+ model, provider = parse_model_and_provider(model_name)
45
+
46
+ print(f"πŸ€– Chat: Using model='{model}', provider='{provider if provider else 'auto'}'")
47
+
48
+ # Prepare messages first
49
+ messages = [{"role": "system", "content": system_message}]
50
+ messages.extend(history)
51
+ messages.append({"role": "user", "content": message})
52
+
53
+ print(f"πŸ’¬ Chat: Prepared {len(messages)} messages, creating client...")
54
+
55
+ # Create client with provider (auto if none specified) and always pass model
56
+ client = InferenceClient(
57
+ provider=provider if provider else "auto",
58
+ api_key=token
59
+ )
60
+
61
+ print(f"πŸš€ Chat: Client created, starting inference...")
62
+
63
+ chat_completion_kwargs = {
64
+ "model": model,
65
+ "messages": messages,
66
+ "max_tokens": max_tokens,
67
+ "stream": True,
68
+ "temperature": temperature,
69
+ "top_p": top_p,
70
+ }
71
+
72
+ response = ""
73
+
74
+ print(f"πŸ“‘ Chat: Making streaming request...")
75
+ stream = client.chat_completion(**chat_completion_kwargs)
76
+ print(f"πŸ”„ Chat: Got stream, starting to iterate...")
77
+
78
+ for message in stream:
79
+ choices = message.choices
80
+ token_content = ""
81
+ if len(choices) and choices[0].delta.content:
82
+ token_content = choices[0].delta.content
83
+
84
+ response += token_content
85
+ yield response
86
+
87
+ # Report successful token usage
88
+ report_token_status(token_id, "success", api_key=proxy_api_key)
89
+
90
+ except HfHubHTTPError as e:
91
+ # Report HF Hub errors
92
+ if 'token_id' in locals():
93
+ report_token_status(token_id, "error", str(e), api_key=proxy_api_key)
94
+ yield format_error_message("HuggingFace API Error", str(e))
95
+
96
+ except Exception as e:
97
+ # Report other errors
98
+ if 'token_id' in locals():
99
+ report_token_status(token_id, "error", str(e), api_key=proxy_api_key)
100
+ yield format_error_message("Unexpected Error", str(e))
101
+
102
+
103
+ def handle_chat_submit(message, history, system_msg, model_name, max_tokens, temperature, top_p):
104
+ """
105
+ Handle chat submission and manage conversation history.
106
+ """
107
+ if not message.strip():
108
+ return history, ""
109
+
110
+ # Add user message to history
111
+ history = history + [{"role": "user", "content": message}]
112
+
113
+ # Generate response
114
+ response_generator = chat_respond(
115
+ message,
116
+ history[:-1], # Don't include the current message in history for the function
117
+ system_msg,
118
+ model_name,
119
+ max_tokens,
120
+ temperature,
121
+ top_p
122
+ )
123
+
124
+ # Get the final response
125
+ assistant_response = ""
126
+ for partial_response in response_generator:
127
+ assistant_response = partial_response
128
+
129
+ # Add assistant response to history
130
+ history = history + [{"role": "assistant", "content": assistant_response}]
131
+
132
+ return history, ""
image_handler.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Image generation functionality handler for HF-Inferoxy AI Hub.
3
+ Handles text-to-image generation with multiple providers.
4
+ """
5
+
6
+ import os
7
+ from huggingface_hub import InferenceClient
8
+ from huggingface_hub.errors import HfHubHTTPError
9
+ from hf_token_utils import get_proxy_token, report_token_status
10
+ from utils import (
11
+ IMAGE_CONFIG,
12
+ validate_proxy_key,
13
+ format_error_message,
14
+ format_success_message
15
+ )
16
+
17
+
18
+ def validate_dimensions(width, height):
19
+ """Validate that dimensions are divisible by 8 (required by most diffusion models)"""
20
+ if width % 8 != 0 or height % 8 != 0:
21
+ return False, "Width and height must be divisible by 8"
22
+ return True, ""
23
+
24
+
25
+ def generate_image(
26
+ prompt: str,
27
+ model_name: str,
28
+ provider: str,
29
+ negative_prompt: str = "",
30
+ width: int = IMAGE_CONFIG["width"],
31
+ height: int = IMAGE_CONFIG["height"],
32
+ num_inference_steps: int = IMAGE_CONFIG["num_inference_steps"],
33
+ guidance_scale: float = IMAGE_CONFIG["guidance_scale"],
34
+ seed: int = IMAGE_CONFIG["seed"],
35
+ ):
36
+ """
37
+ Generate an image using the specified model and provider through HF-Inferoxy.
38
+ """
39
+ # Validate proxy API key
40
+ is_valid, error_msg = validate_proxy_key()
41
+ if not is_valid:
42
+ return None, error_msg
43
+
44
+ proxy_api_key = os.getenv("PROXY_KEY")
45
+
46
+ try:
47
+ # Get token from HF-Inferoxy proxy server
48
+ print(f"πŸ”‘ Image: Requesting token from proxy...")
49
+ token, token_id = get_proxy_token(api_key=proxy_api_key)
50
+ print(f"βœ… Image: Got token: {token_id}")
51
+
52
+ print(f"🎨 Image: Using model='{model_name}', provider='{provider}'")
53
+
54
+ # Create client with specified provider
55
+ client = InferenceClient(
56
+ provider=provider,
57
+ api_key=token
58
+ )
59
+
60
+ print(f"πŸš€ Image: Client created, preparing generation params...")
61
+
62
+ # Prepare generation parameters
63
+ generation_params = {
64
+ "model": model_name,
65
+ "prompt": prompt,
66
+ "width": width,
67
+ "height": height,
68
+ "num_inference_steps": num_inference_steps,
69
+ "guidance_scale": guidance_scale,
70
+ }
71
+
72
+ # Add optional parameters if provided
73
+ if negative_prompt:
74
+ generation_params["negative_prompt"] = negative_prompt
75
+ if seed != -1:
76
+ generation_params["seed"] = seed
77
+
78
+ print(f"πŸ“ Image: Dimensions: {width}x{height}, steps: {num_inference_steps}, guidance: {guidance_scale}")
79
+ print(f"πŸ“‘ Image: Making generation request...")
80
+
81
+ # Generate image
82
+ image = client.text_to_image(**generation_params)
83
+
84
+ print(f"πŸ–ΌοΈ Image: Generation completed! Image type: {type(image)}")
85
+
86
+ # Report successful token usage
87
+ report_token_status(token_id, "success", api_key=proxy_api_key)
88
+
89
+ return image, format_success_message("Image generated", f"using {model_name} on {provider}")
90
+
91
+ except HfHubHTTPError as e:
92
+ # Report HF Hub errors
93
+ if 'token_id' in locals():
94
+ report_token_status(token_id, "error", str(e), api_key=proxy_api_key)
95
+ return None, format_error_message("HuggingFace API Error", str(e))
96
+
97
+ except Exception as e:
98
+ # Report other errors
99
+ if 'token_id' in locals():
100
+ report_token_status(token_id, "error", str(e), api_key=proxy_api_key)
101
+ return None, format_error_message("Unexpected Error", str(e))
102
+
103
+
104
+ def handle_image_generation(prompt_val, model_val, provider_val, negative_prompt_val, width_val, height_val, steps_val, guidance_val, seed_val):
105
+ """
106
+ Handle image generation request with validation.
107
+ """
108
+ # Validate dimensions
109
+ is_valid, error_msg = validate_dimensions(width_val, height_val)
110
+ if not is_valid:
111
+ return None, format_error_message("Validation Error", error_msg)
112
+
113
+ # Generate image
114
+ return generate_image(
115
+ prompt=prompt_val,
116
+ model_name=model_val,
117
+ provider=provider_val,
118
+ negative_prompt=negative_prompt_val,
119
+ width=width_val,
120
+ height=height_val,
121
+ num_inference_steps=steps_val,
122
+ guidance_scale=guidance_val,
123
+ seed=seed_val
124
+ )
ui_components.py ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ UI components for HF-Inferoxy AI Hub.
3
+ Contains functions to create different sections of the Gradio interface.
4
+ """
5
+
6
+ import gradio as gr
7
+ from utils import (
8
+ DEFAULT_CHAT_MODEL, DEFAULT_IMAGE_MODEL, DEFAULT_IMAGE_PROVIDER,
9
+ CHAT_CONFIG, IMAGE_CONFIG, IMAGE_PROVIDERS, IMAGE_MODEL_PRESETS,
10
+ IMAGE_EXAMPLE_PROMPTS
11
+ )
12
+
13
+
14
+ def create_chat_tab(handle_chat_submit_fn):
15
+ """
16
+ Create the chat tab interface.
17
+ """
18
+ with gr.Tab("πŸ’¬ Chat Assistant", id="chat"):
19
+ # Chat interface at the top - most prominent
20
+ chatbot_display = gr.Chatbot(
21
+ label="Chat",
22
+ type="messages",
23
+ height=800,
24
+ show_copy_button=True
25
+ )
26
+
27
+ # Chat input
28
+ with gr.Row():
29
+ chat_input = gr.Textbox(
30
+ placeholder="Type your message here...",
31
+ label="Message",
32
+ scale=4,
33
+ container=False
34
+ )
35
+ chat_submit = gr.Button("Send", variant="primary", scale=1)
36
+
37
+ # Configuration options below the chat
38
+ with gr.Row():
39
+ with gr.Column(scale=1):
40
+ chat_model_name = gr.Textbox(
41
+ value=DEFAULT_CHAT_MODEL,
42
+ label="Model Name",
43
+ placeholder="e.g., openai/gpt-oss-20b or openai/gpt-oss-20b:fireworks-ai"
44
+ )
45
+ chat_system_message = gr.Textbox(
46
+ value=CHAT_CONFIG["system_message"],
47
+ label="System Message",
48
+ lines=2,
49
+ placeholder="Define the assistant's personality and behavior..."
50
+ )
51
+
52
+ with gr.Column(scale=1):
53
+ chat_max_tokens = gr.Slider(
54
+ minimum=1, maximum=4096, value=CHAT_CONFIG["max_tokens"], step=1,
55
+ label="Max New Tokens"
56
+ )
57
+ chat_temperature = gr.Slider(
58
+ minimum=0.1, maximum=2.0, value=CHAT_CONFIG["temperature"], step=0.1,
59
+ label="Temperature"
60
+ )
61
+ chat_top_p = gr.Slider(
62
+ minimum=0.1, maximum=1.0, value=CHAT_CONFIG["top_p"], step=0.05,
63
+ label="Top-p (nucleus sampling)"
64
+ )
65
+
66
+ # Configuration tips below the chat
67
+ create_chat_tips()
68
+
69
+ # Connect chat events
70
+ chat_submit.click(
71
+ fn=handle_chat_submit_fn,
72
+ inputs=[chat_input, chatbot_display, chat_system_message, chat_model_name,
73
+ chat_max_tokens, chat_temperature, chat_top_p],
74
+ outputs=[chatbot_display, chat_input]
75
+ )
76
+
77
+ chat_input.submit(
78
+ fn=handle_chat_submit_fn,
79
+ inputs=[chat_input, chatbot_display, chat_system_message, chat_model_name,
80
+ chat_max_tokens, chat_temperature, chat_top_p],
81
+ outputs=[chatbot_display, chat_input]
82
+ )
83
+
84
+
85
+ def create_chat_tips():
86
+ """Create the tips section for the chat tab."""
87
+ with gr.Row():
88
+ with gr.Column():
89
+ gr.Markdown("""
90
+ ### πŸ’‘ Chat Tips
91
+
92
+ **Model Format:**
93
+ - Single model: `openai/gpt-oss-20b` (uses auto provider)
94
+ - With provider: `openai/gpt-oss-20b:fireworks-ai`
95
+
96
+ **Popular Models:**
97
+ - `openai/gpt-oss-20b` - Fast general purpose
98
+ - `meta-llama/Llama-2-7b-chat-hf` - Chat optimized
99
+ - `microsoft/DialoGPT-medium` - Conversation
100
+ - `google/flan-t5-base` - Instruction following
101
+ """)
102
+
103
+ with gr.Column():
104
+ gr.Markdown("""
105
+ ### πŸš€ Popular Providers
106
+
107
+ - **auto** - Let HF choose best provider (default)
108
+ - **fireworks-ai** - Fast and reliable
109
+ - **cerebras** - High performance
110
+ - **groq** - Ultra-fast inference
111
+ - **together** - Wide model support
112
+ - **cohere** - Advanced language models
113
+
114
+ **Examples:**
115
+ - `openai/gpt-oss-20b` (auto provider)
116
+ - `openai/gpt-oss-20b:fireworks-ai` (specific provider)
117
+ """)
118
+
119
+
120
+ def create_image_tab(handle_image_generation_fn):
121
+ """
122
+ Create the image generation tab interface.
123
+ """
124
+ with gr.Tab("🎨 Image Generator", id="image"):
125
+ with gr.Row():
126
+ with gr.Column(scale=2):
127
+ # Image output
128
+ output_image = gr.Image(
129
+ label="Generated Image",
130
+ type="pil",
131
+ height=600,
132
+ show_download_button=True
133
+ )
134
+ status_text = gr.Textbox(
135
+ label="Generation Status",
136
+ interactive=False,
137
+ lines=2
138
+ )
139
+
140
+ with gr.Column(scale=1):
141
+ # Model and provider inputs
142
+ with gr.Group():
143
+ gr.Markdown("**πŸ€– Model & Provider**")
144
+ img_model_name = gr.Textbox(
145
+ value=DEFAULT_IMAGE_MODEL,
146
+ label="Model Name",
147
+ placeholder="e.g., Qwen/Qwen-Image or stabilityai/stable-diffusion-xl-base-1.0"
148
+ )
149
+ img_provider = gr.Dropdown(
150
+ choices=IMAGE_PROVIDERS,
151
+ value=DEFAULT_IMAGE_PROVIDER,
152
+ label="Provider",
153
+ interactive=True
154
+ )
155
+
156
+ # Generation parameters
157
+ with gr.Group():
158
+ gr.Markdown("**πŸ“ Prompts**")
159
+ img_prompt = gr.Textbox(
160
+ value=IMAGE_EXAMPLE_PROMPTS[0], # Use first example as default
161
+ label="Prompt",
162
+ lines=3,
163
+ placeholder="Describe the image you want to generate..."
164
+ )
165
+ img_negative_prompt = gr.Textbox(
166
+ value=IMAGE_CONFIG["negative_prompt"],
167
+ label="Negative Prompt",
168
+ lines=2,
169
+ placeholder="Describe what you DON'T want in the image..."
170
+ )
171
+
172
+ with gr.Group():
173
+ gr.Markdown("**βš™οΈ Generation Settings**")
174
+ with gr.Row():
175
+ img_width = gr.Slider(
176
+ minimum=256, maximum=2048, value=IMAGE_CONFIG["width"], step=64,
177
+ label="Width", info="Must be divisible by 8"
178
+ )
179
+ img_height = gr.Slider(
180
+ minimum=256, maximum=2048, value=IMAGE_CONFIG["height"], step=64,
181
+ label="Height", info="Must be divisible by 8"
182
+ )
183
+
184
+ with gr.Row():
185
+ img_steps = gr.Slider(
186
+ minimum=10, maximum=100, value=IMAGE_CONFIG["num_inference_steps"], step=1,
187
+ label="Inference Steps", info="More steps = better quality"
188
+ )
189
+ img_guidance = gr.Slider(
190
+ minimum=1.0, maximum=20.0, value=IMAGE_CONFIG["guidance_scale"], step=0.5,
191
+ label="Guidance Scale", info="How closely to follow prompt"
192
+ )
193
+
194
+ img_seed = gr.Slider(
195
+ minimum=-1, maximum=999999, value=IMAGE_CONFIG["seed"], step=1,
196
+ label="Seed", info="-1 for random"
197
+ )
198
+
199
+ # Generate button
200
+ generate_btn = gr.Button(
201
+ "🎨 Generate Image",
202
+ variant="primary",
203
+ size="lg",
204
+ scale=2
205
+ )
206
+
207
+ # Quick model presets
208
+ create_image_presets(img_model_name, img_provider)
209
+
210
+ # Examples for image generation
211
+ create_image_examples(img_prompt)
212
+
213
+ # Connect image generation events
214
+ generate_btn.click(
215
+ fn=handle_image_generation_fn,
216
+ inputs=[
217
+ img_prompt, img_model_name, img_provider, img_negative_prompt,
218
+ img_width, img_height, img_steps, img_guidance, img_seed
219
+ ],
220
+ outputs=[output_image, status_text]
221
+ )
222
+
223
+
224
+ def create_image_presets(img_model_name, img_provider):
225
+ """Create quick model presets for image generation."""
226
+ with gr.Group():
227
+ gr.Markdown("**🎯 Popular Presets**")
228
+
229
+ for name, model, provider in IMAGE_MODEL_PRESETS:
230
+ btn = gr.Button(name, size="sm")
231
+ btn.click(
232
+ lambda m=model, p=provider: (m, p),
233
+ outputs=[img_model_name, img_provider]
234
+ )
235
+
236
+
237
+ def create_image_examples(img_prompt):
238
+ """Create example prompts for image generation."""
239
+ with gr.Group():
240
+ gr.Markdown("**🌟 Example Prompts**")
241
+ img_examples = gr.Examples(
242
+ examples=[[prompt] for prompt in IMAGE_EXAMPLE_PROMPTS],
243
+ inputs=img_prompt
244
+ )
245
+
246
+
247
+ def create_main_header():
248
+ """Create the main header for the application."""
249
+ gr.Markdown("""
250
+ # πŸš€ HF-Inferoxy AI Hub
251
+
252
+ A comprehensive AI platform combining chat and image generation capabilities with intelligent token management through HF-Inferoxy.
253
+
254
+ **Features:**
255
+ - πŸ’¬ **Smart Chat**: Conversational AI with streaming responses
256
+ - 🎨 **Image Generation**: Text-to-image creation with multiple providers
257
+ - πŸ”„ **Intelligent Token Management**: Automatic token rotation and error handling
258
+ - 🌐 **Multi-Provider Support**: Works with HF Inference, Cerebras, Cohere, Groq, Together, Fal.ai, and more
259
+ """)
260
+
261
+
262
+ def create_footer():
263
+ """Create the footer with helpful information."""
264
+ gr.Markdown("""
265
+ ---
266
+ ### πŸ“š How to Use
267
+
268
+ **Chat Tab:**
269
+ - Enter your message and customize the AI's behavior with system messages
270
+ - Choose models and providers using the format `model:provider`
271
+ - Adjust temperature for creativity and top-p for response diversity
272
+
273
+ **Image Tab:**
274
+ - Write detailed prompts describing your desired image
275
+ - Use negative prompts to avoid unwanted elements
276
+ - Experiment with different models and providers for varied styles
277
+ - Higher inference steps = better quality but slower generation
278
+
279
+ **Supported Providers:**
280
+ - **fal-ai**: High-quality image generation (default for images)
281
+ - **hf-inference**: Core API with comprehensive model support
282
+ - **cerebras**: High-performance inference
283
+ - **cohere**: Advanced language models with multilingual support
284
+ - **groq**: Ultra-fast inference, optimized for speed
285
+ - **together**: Collaborative AI hosting, wide model support
286
+ - **nebius**: Cloud-native services with enterprise features
287
+ - **nscale**: Optimized inference performance
288
+ - **replicate**: Collaborative AI hosting
289
+
290
+ **Built with ❀️ using [HF-Inferoxy](https://nazdridoy.github.io/hf-inferoxy/) for intelligent token management**
291
+ """)
utils.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Utility functions and constants for HF-Inferoxy AI Hub.
3
+ Contains configuration constants and helper functions.
4
+ """
5
+
6
+ import os
7
+
8
+
9
+ # Configuration constants
10
+ DEFAULT_CHAT_MODEL = "openai/gpt-oss-20b"
11
+ DEFAULT_IMAGE_MODEL = "Qwen/Qwen-Image"
12
+ DEFAULT_IMAGE_PROVIDER = "fal-ai"
13
+
14
+ # Chat configuration
15
+ CHAT_CONFIG = {
16
+ "max_tokens": 1024,
17
+ "temperature": 0.7,
18
+ "top_p": 0.95,
19
+ "system_message": "You are a helpful and friendly AI assistant. Provide clear, accurate, and helpful responses."
20
+ }
21
+
22
+ # Image generation configuration
23
+ IMAGE_CONFIG = {
24
+ "width": 1024,
25
+ "height": 1024,
26
+ "num_inference_steps": 20,
27
+ "guidance_scale": 7.5,
28
+ "seed": -1,
29
+ "negative_prompt": "blurry, low quality, distorted, deformed, ugly, bad anatomy"
30
+ }
31
+
32
+ # Supported providers
33
+ CHAT_PROVIDERS = ["auto", "fireworks-ai", "cerebras", "groq", "together", "cohere"]
34
+ IMAGE_PROVIDERS = ["hf-inference", "fal-ai", "nebius", "nscale", "replicate", "together"]
35
+
36
+ # Popular models for quick access
37
+ POPULAR_CHAT_MODELS = [
38
+ "openai/gpt-oss-20b",
39
+ "meta-llama/Llama-2-7b-chat-hf",
40
+ "microsoft/DialoGPT-medium",
41
+ "google/flan-t5-base"
42
+ ]
43
+
44
+ POPULAR_IMAGE_MODELS = [
45
+ "Qwen/Qwen-Image",
46
+ "black-forest-labs/FLUX.1-dev",
47
+ "stabilityai/stable-diffusion-xl-base-1.0",
48
+ "runwayml/stable-diffusion-v1-5"
49
+ ]
50
+
51
+ # Model presets for image generation
52
+ IMAGE_MODEL_PRESETS = [
53
+ ("Qwen (Fal.ai)", "Qwen/Qwen-Image", "fal-ai"),
54
+ ("Qwen (Replicate)", "Qwen/Qwen-Image", "replicate"),
55
+ ("FLUX.1 (Nebius)", "black-forest-labs/FLUX.1-dev", "nebius"),
56
+ ("SDXL (HF)", "stabilityai/stable-diffusion-xl-base-1.0", "hf-inference"),
57
+ ]
58
+
59
+ # Example prompts for image generation
60
+ IMAGE_EXAMPLE_PROMPTS = [
61
+ "A majestic dragon flying over a medieval castle, epic fantasy art, detailed, 8k",
62
+ "A serene Japanese garden with cherry blossoms, zen atmosphere, peaceful, high quality",
63
+ "A futuristic cityscape with flying cars and neon lights, cyberpunk style, cinematic",
64
+ "A cute robot cat playing with yarn, adorable, cartoon style, vibrant colors",
65
+ "A magical forest with glowing mushrooms and fairy lights, fantasy, ethereal beauty",
66
+ "Portrait of a wise old wizard with flowing robes, magical aura, fantasy character art",
67
+ "A cozy coffee shop on a rainy day, warm lighting, peaceful atmosphere, detailed",
68
+ "An astronaut floating in space with Earth in background, photorealistic, stunning"
69
+ ]
70
+
71
+
72
+ def get_proxy_key():
73
+ """Get the proxy API key from environment variables."""
74
+ return os.getenv("PROXY_KEY")
75
+
76
+
77
+ def validate_proxy_key():
78
+ """Validate that the proxy key is available."""
79
+ proxy_key = get_proxy_key()
80
+ if not proxy_key:
81
+ return False, "❌ Error: PROXY_KEY not found in environment variables. Please set it in your HuggingFace Space secrets."
82
+ return True, ""
83
+
84
+
85
+ def parse_model_and_provider(model_name):
86
+ """
87
+ Parse model name and provider from a string like 'model:provider'.
88
+ Returns (model, provider) tuple. Provider is None if not specified.
89
+ """
90
+ if ":" in model_name:
91
+ model, provider = model_name.split(":", 1)
92
+ return model, provider
93
+ else:
94
+ return model_name, None
95
+
96
+
97
+ def format_error_message(error_type, error_message):
98
+ """Format error messages consistently."""
99
+ return f"❌ {error_type}: {error_message}"
100
+
101
+
102
+ def format_success_message(operation, details=""):
103
+ """Format success messages consistently."""
104
+ base_message = f"βœ… {operation} completed successfully"
105
+ if details:
106
+ return f"{base_message}: {details}"
107
+ return f"{base_message}!"
108
+
109
+
110
+ def get_gradio_theme():
111
+ """Get the default Gradio theme for the application."""
112
+ try:
113
+ import gradio as gr
114
+ return gr.themes.Soft()
115
+ except ImportError:
116
+ return None