Spaces:
Sleeping
Sleeping
| from flask import Flask, jsonify, request, render_template | |
| from adapters import AutoAdapterModel | |
| from transformers import AutoTokenizer, TextClassificationPipeline | |
| import numpy | |
| tokenizer = AutoTokenizer.from_pretrained("UBC-NLP/MARBERT") | |
| model = AutoAdapterModel.from_pretrained("UBC-NLP/MARBERT") | |
| model.load_adapter("nehalelkaref/aoc3_adapter", set_active=True, with_head=False, source="hf") | |
| model.load_adapter("nehalelkaref/aoc4_adapter", set_active=True, with_head=False, source="hf") | |
| model.load_adapter("nehalelkaref/sarcasm_adapter", set_active=True, with_head=False, source="hf") | |
| model.load_adapter_fusion("fusion/",with_head=True, set_active=True) | |
| pipe = TextClassificationPipeline(tokenizer=tokenizer, model=model) | |
| app = Flask(__name__) | |
| def home(): | |
| return render_template('home.html') | |
| def classify(): | |
| text = request.form['comment'] | |
| prediction = pipe(text) | |
| labels = {"LABEL_0":"GULF", "LABEL_1":"LEVANT","LABEL_2":"EGYPT"} | |
| regions = [] | |
| for res in prediction: | |
| regions.append(labels[res['label']]) | |
| if(regions[0]=="GULF"): | |
| return render_template('gulf.html',output=regions[0]) | |
| if(regions[0]=="LEVANT"): | |
| return render_template('levant.html',output=regions[0]) | |
| if(regions[0]=="EGYPT"): | |
| return render_template('egypt.html',output=regions[0]) | |
| if __name__ == "__main__": | |
| app.run() |