Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
# app.py
|
| 2 |
import io
|
|
|
|
| 3 |
from datetime import datetime
|
| 4 |
|
| 5 |
import gradio as gr
|
|
@@ -11,26 +12,20 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
| 11 |
# Config
|
| 12 |
# ----------------------------
|
| 13 |
|
| 14 |
-
# Small, free, instruction-tuned models that run on CPU
|
| 15 |
DEFAULT_MODELS = [
|
| 16 |
"google/gemma-2-2b-it",
|
| 17 |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
| 18 |
"Qwen/Qwen2.5-1.5B-Instruct",
|
| 19 |
]
|
| 20 |
|
| 21 |
-
_MODEL_CACHE = {} # (tokenizer, model)
|
| 22 |
|
| 23 |
|
| 24 |
# ----------------------------
|
| 25 |
# Utilities
|
| 26 |
# ----------------------------
|
| 27 |
|
| 28 |
-
def df_to_csv_bytes(df: pd.DataFrame) -> bytes:
|
| 29 |
-
buf = io.StringIO()
|
| 30 |
-
df.to_csv(buf, index=False)
|
| 31 |
-
return buf.getvalue().encode("utf-8")
|
| 32 |
-
|
| 33 |
-
|
| 34 |
def _load_model(model_id: str):
|
| 35 |
"""Load tokenizer and model (cached)."""
|
| 36 |
if model_id in _MODEL_CACHE:
|
|
@@ -38,9 +33,8 @@ def _load_model(model_id: str):
|
|
| 38 |
|
| 39 |
tok = AutoTokenizer.from_pretrained(model_id, use_fast=True)
|
| 40 |
|
| 41 |
-
# Ensure we have a pad token to avoid warnings
|
| 42 |
if tok.pad_token is None:
|
| 43 |
-
# Prefer eos_token, else add a pad token
|
| 44 |
if tok.eos_token is not None:
|
| 45 |
tok.pad_token = tok.eos_token
|
| 46 |
else:
|
|
@@ -53,7 +47,8 @@ def _load_model(model_id: str):
|
|
| 53 |
low_cpu_mem_usage=True,
|
| 54 |
device_map="auto",
|
| 55 |
)
|
| 56 |
-
|
|
|
|
| 57 |
if model.get_input_embeddings().num_embeddings != len(tok):
|
| 58 |
model.resize_token_embeddings(len(tok))
|
| 59 |
|
|
@@ -62,9 +57,7 @@ def _load_model(model_id: str):
|
|
| 62 |
|
| 63 |
|
| 64 |
def _format_prompt(tokenizer, system_prompt: str, user_prompt: str) -> str:
|
| 65 |
-
"""
|
| 66 |
-
Prefer the model's chat template. Fallback to a light instruction format.
|
| 67 |
-
"""
|
| 68 |
sys = (system_prompt or "").strip()
|
| 69 |
usr = (user_prompt or "").strip()
|
| 70 |
|
|
@@ -79,7 +72,7 @@ def _format_prompt(tokenizer, system_prompt: str, user_prompt: str) -> str:
|
|
| 79 |
add_generation_prompt=True,
|
| 80 |
)
|
| 81 |
|
| 82 |
-
# Fallback format
|
| 83 |
prefix = f"<<SYS>>\n{sys}\n<</SYS>>\n\n" if sys else ""
|
| 84 |
return f"{prefix}<<USER>>\n{usr}\n<</USER>>\n<<ASSISTANT>>\n"
|
| 85 |
|
|
@@ -98,14 +91,13 @@ def generate_batch(
|
|
| 98 |
tok, model = _load_model(model_id)
|
| 99 |
device = model.device
|
| 100 |
|
| 101 |
-
# Split lines,
|
| 102 |
prompts = [p.strip() for p in prompts_multiline.splitlines() if p.strip()]
|
| 103 |
if not prompts:
|
| 104 |
return pd.DataFrame([{"user_prompt": "", "response": "", "tokens_out": 0}])
|
| 105 |
|
| 106 |
-
# Build formatted prompts
|
| 107 |
formatted = [_format_prompt(tok, system_prompt, p) for p in prompts]
|
| 108 |
-
|
| 109 |
enc = tok(
|
| 110 |
formatted,
|
| 111 |
return_tensors="pt",
|
|
@@ -113,7 +105,7 @@ def generate_batch(
|
|
| 113 |
truncation=True,
|
| 114 |
).to(device)
|
| 115 |
|
| 116 |
-
# True prompt lengths per row (
|
| 117 |
prompt_lens = enc["attention_mask"].sum(dim=1)
|
| 118 |
|
| 119 |
with torch.no_grad():
|
|
@@ -129,9 +121,8 @@ def generate_batch(
|
|
| 129 |
pad_token_id=tok.pad_token_id,
|
| 130 |
)
|
| 131 |
|
| 132 |
-
# Slice generated tokens
|
| 133 |
-
responses = []
|
| 134 |
-
tokens_out = []
|
| 135 |
for i in range(gen.size(0)):
|
| 136 |
start = int(prompt_lens[i].item())
|
| 137 |
gen_ids = gen[i, start:]
|
|
@@ -139,14 +130,18 @@ def generate_batch(
|
|
| 139 |
responses.append(text)
|
| 140 |
tokens_out.append(len(gen_ids))
|
| 141 |
|
| 142 |
-
|
| 143 |
-
{
|
| 144 |
-
"user_prompt": prompts,
|
| 145 |
-
"response": responses,
|
| 146 |
-
"tokens_out": tokens_out,
|
| 147 |
-
}
|
| 148 |
)
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
|
| 152 |
# ----------------------------
|
|
@@ -158,7 +153,7 @@ with gr.Blocks(title="Multi-Prompt Chat (System Prompt Control)") as demo:
|
|
| 158 |
"""
|
| 159 |
# 🧪 Multi-Prompt Chat for HF Space
|
| 160 |
Pick a small free model, set a **system prompt**, and enter **multiple user prompts** (one per line).
|
| 161 |
-
Click **Generate** to get batched responses, then **Download CSV**
|
| 162 |
"""
|
| 163 |
)
|
| 164 |
|
|
@@ -191,7 +186,7 @@ with gr.Blocks(title="Multi-Prompt Chat (System Prompt Control)") as demo:
|
|
| 191 |
run_btn = gr.Button("Generate", variant="primary")
|
| 192 |
|
| 193 |
with gr.Column(scale=1):
|
| 194 |
-
# Keep last results for
|
| 195 |
state_df = gr.State(value=None)
|
| 196 |
|
| 197 |
out_df = gr.Dataframe(
|
|
@@ -201,14 +196,14 @@ with gr.Blocks(title="Multi-Prompt Chat (System Prompt Control)") as demo:
|
|
| 201 |
wrap=True,
|
| 202 |
interactive=False,
|
| 203 |
row_count=(0, "dynamic"),
|
| 204 |
-
type="pandas", # ensure callbacks
|
| 205 |
)
|
| 206 |
|
| 207 |
-
#
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
)
|
| 212 |
|
| 213 |
# -------- Callbacks --------
|
| 214 |
|
|
@@ -223,7 +218,7 @@ with gr.Blocks(title="Multi-Prompt Chat (System Prompt Control)") as demo:
|
|
| 223 |
top_k=int(top_k),
|
| 224 |
repetition_penalty=float(repetition_penalty),
|
| 225 |
)
|
| 226 |
-
return df, df #
|
| 227 |
|
| 228 |
run_btn.click(
|
| 229 |
_generate_cb,
|
|
@@ -233,14 +228,13 @@ with gr.Blocks(title="Multi-Prompt Chat (System Prompt Control)") as demo:
|
|
| 233 |
)
|
| 234 |
|
| 235 |
def _prepare_csv_cb(df_state):
|
| 236 |
-
#
|
| 237 |
if df_state is None or len(df_state) == 0:
|
| 238 |
df_state = pd.DataFrame([{"user_prompt": "", "response": "", "tokens_out": 0}])
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
return gr.DownloadButton.update(value=csv_bytes)
|
| 242 |
|
| 243 |
-
|
| 244 |
|
| 245 |
if __name__ == "__main__":
|
| 246 |
demo.launch()
|
|
|
|
| 1 |
# app.py
|
| 2 |
import io
|
| 3 |
+
import tempfile
|
| 4 |
from datetime import datetime
|
| 5 |
|
| 6 |
import gradio as gr
|
|
|
|
| 12 |
# Config
|
| 13 |
# ----------------------------
|
| 14 |
|
| 15 |
+
# Small, free, instruction-tuned models that can run on CPU (Basic Space).
|
| 16 |
DEFAULT_MODELS = [
|
| 17 |
"google/gemma-2-2b-it",
|
| 18 |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
| 19 |
"Qwen/Qwen2.5-1.5B-Instruct",
|
| 20 |
]
|
| 21 |
|
| 22 |
+
_MODEL_CACHE = {} # cache: model_id -> (tokenizer, model)
|
| 23 |
|
| 24 |
|
| 25 |
# ----------------------------
|
| 26 |
# Utilities
|
| 27 |
# ----------------------------
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
def _load_model(model_id: str):
|
| 30 |
"""Load tokenizer and model (cached)."""
|
| 31 |
if model_id in _MODEL_CACHE:
|
|
|
|
| 33 |
|
| 34 |
tok = AutoTokenizer.from_pretrained(model_id, use_fast=True)
|
| 35 |
|
| 36 |
+
# Ensure we have a pad token to avoid generate() warnings/errors.
|
| 37 |
if tok.pad_token is None:
|
|
|
|
| 38 |
if tok.eos_token is not None:
|
| 39 |
tok.pad_token = tok.eos_token
|
| 40 |
else:
|
|
|
|
| 47 |
low_cpu_mem_usage=True,
|
| 48 |
device_map="auto",
|
| 49 |
)
|
| 50 |
+
|
| 51 |
+
# If we added tokens, resize embeddings.
|
| 52 |
if model.get_input_embeddings().num_embeddings != len(tok):
|
| 53 |
model.resize_token_embeddings(len(tok))
|
| 54 |
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
def _format_prompt(tokenizer, system_prompt: str, user_prompt: str) -> str:
|
| 60 |
+
"""Prefer each model's chat template; fallback to a simple instruction format."""
|
|
|
|
|
|
|
| 61 |
sys = (system_prompt or "").strip()
|
| 62 |
usr = (user_prompt or "").strip()
|
| 63 |
|
|
|
|
| 72 |
add_generation_prompt=True,
|
| 73 |
)
|
| 74 |
|
| 75 |
+
# Fallback plain format
|
| 76 |
prefix = f"<<SYS>>\n{sys}\n<</SYS>>\n\n" if sys else ""
|
| 77 |
return f"{prefix}<<USER>>\n{usr}\n<</USER>>\n<<ASSISTANT>>\n"
|
| 78 |
|
|
|
|
| 91 |
tok, model = _load_model(model_id)
|
| 92 |
device = model.device
|
| 93 |
|
| 94 |
+
# Split lines, drop empties
|
| 95 |
prompts = [p.strip() for p in prompts_multiline.splitlines() if p.strip()]
|
| 96 |
if not prompts:
|
| 97 |
return pd.DataFrame([{"user_prompt": "", "response": "", "tokens_out": 0}])
|
| 98 |
|
| 99 |
+
# Build formatted prompts and encode
|
| 100 |
formatted = [_format_prompt(tok, system_prompt, p) for p in prompts]
|
|
|
|
| 101 |
enc = tok(
|
| 102 |
formatted,
|
| 103 |
return_tensors="pt",
|
|
|
|
| 105 |
truncation=True,
|
| 106 |
).to(device)
|
| 107 |
|
| 108 |
+
# True prompt lengths per row (ignore padding)
|
| 109 |
prompt_lens = enc["attention_mask"].sum(dim=1)
|
| 110 |
|
| 111 |
with torch.no_grad():
|
|
|
|
| 121 |
pad_token_id=tok.pad_token_id,
|
| 122 |
)
|
| 123 |
|
| 124 |
+
# Slice generated tokens using prompt lengths
|
| 125 |
+
responses, tokens_out = [], []
|
|
|
|
| 126 |
for i in range(gen.size(0)):
|
| 127 |
start = int(prompt_lens[i].item())
|
| 128 |
gen_ids = gen[i, start:]
|
|
|
|
| 130 |
responses.append(text)
|
| 131 |
tokens_out.append(len(gen_ids))
|
| 132 |
|
| 133 |
+
return pd.DataFrame(
|
| 134 |
+
{"user_prompt": prompts, "response": responses, "tokens_out": tokens_out}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
)
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def write_csv_tempfile(df: pd.DataFrame) -> str:
|
| 139 |
+
"""Write CSV to a real temp file and return its path (works in Spaces)."""
|
| 140 |
+
# Use NamedTemporaryFile with delete=False so Gradio can read after returning.
|
| 141 |
+
ts = datetime.utcnow().strftime("%Y%m%d-%H%M%S")
|
| 142 |
+
tmp = tempfile.NamedTemporaryFile(prefix=f"batch_{ts}_", suffix=".csv", delete=False, dir="/tmp")
|
| 143 |
+
df.to_csv(tmp.name, index=False)
|
| 144 |
+
return tmp.name
|
| 145 |
|
| 146 |
|
| 147 |
# ----------------------------
|
|
|
|
| 153 |
"""
|
| 154 |
# 🧪 Multi-Prompt Chat for HF Space
|
| 155 |
Pick a small free model, set a **system prompt**, and enter **multiple user prompts** (one per line).
|
| 156 |
+
Click **Generate** to get batched responses, then **Download CSV** to save them.
|
| 157 |
"""
|
| 158 |
)
|
| 159 |
|
|
|
|
| 186 |
run_btn = gr.Button("Generate", variant="primary")
|
| 187 |
|
| 188 |
with gr.Column(scale=1):
|
| 189 |
+
# Keep last results for downloading
|
| 190 |
state_df = gr.State(value=None)
|
| 191 |
|
| 192 |
out_df = gr.Dataframe(
|
|
|
|
| 196 |
wrap=True,
|
| 197 |
interactive=False,
|
| 198 |
row_count=(0, "dynamic"),
|
| 199 |
+
type="pandas", # ensure callbacks receive a pandas DataFrame
|
| 200 |
)
|
| 201 |
|
| 202 |
+
# File widget that will display a real downloadable file
|
| 203 |
+
out_file = gr.File(label="Download CSV", visible=False)
|
| 204 |
+
|
| 205 |
+
# Separate button to trigger file creation
|
| 206 |
+
csv_btn = gr.Button("Prepare CSV for download")
|
| 207 |
|
| 208 |
# -------- Callbacks --------
|
| 209 |
|
|
|
|
| 218 |
top_k=int(top_k),
|
| 219 |
repetition_penalty=float(repetition_penalty),
|
| 220 |
)
|
| 221 |
+
return df, df # (table, state)
|
| 222 |
|
| 223 |
run_btn.click(
|
| 224 |
_generate_cb,
|
|
|
|
| 228 |
)
|
| 229 |
|
| 230 |
def _prepare_csv_cb(df_state):
|
| 231 |
+
# Robust across Gradio versions: write to a real temp file and return its path
|
| 232 |
if df_state is None or len(df_state) == 0:
|
| 233 |
df_state = pd.DataFrame([{"user_prompt": "", "response": "", "tokens_out": 0}])
|
| 234 |
+
path = write_csv_tempfile(df_state)
|
| 235 |
+
return gr.File.update(value=path, visible=True)
|
|
|
|
| 236 |
|
| 237 |
+
csv_btn.click(_prepare_csv_cb, inputs=[state_df], outputs=[out_file], api_name="download_csv")
|
| 238 |
|
| 239 |
if __name__ == "__main__":
|
| 240 |
demo.launch()
|