Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
| model_path = "anilbhatt1/phi2-oasst-guanaco-bf16-custom" | |
| model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True) | |
| tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| def generate_text(prompt, response_length): | |
| prompt = str(prompt) | |
| max_len = int(response_length) | |
| gen = pipeline('text-generation', model=model, tokenizer=tokenizer, max_length=max_len) | |
| result = gen(prompt) | |
| output_msg = result[0]['generated_text'] | |
| return output_msg | |
| def gradio_fn(prompt, response_length): | |
| output_txt_msg = generate_text(prompt, response_length) | |
| return output_txt_msg | |
| markdown_description = """ | |
| - This is a Gradio app that answers the query you ask it | |
| - Uses **microsoft/phi-2 qlora** optimized model finetuned on **timdettmers/openassistant-guanaco** dataset | |
| """ | |
| demo = gr.Interface(fn=gradio_fn, | |
| inputs=[gr.Textbox(info="How may I help you ? please enter your prompt here..."), | |
| gr.Slider(value=50, minimum=50, maximum=200, \ | |
| info="Choose a response length min chars=50, max=200")], | |
| outputs=gr.Textbox(), | |
| title="phi2 - Dialog Partner", | |
| description=markdown_description, | |
| article=" **Credits** : https://github.com/mshumer/gpt-llm-trainer ") | |
| demo.queue().launch(share=True) | |