Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
import streamlit as st
|
| 3 |
|
| 4 |
-
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
| 5 |
from langchain.vectorstores.faiss import FAISS
|
| 6 |
from langchain.chains import VectorDBQA
|
| 7 |
from huggingface_hub import snapshot_download
|
|
@@ -9,38 +9,52 @@ from langchain import OpenAI
|
|
| 9 |
from langchain import PromptTemplate
|
| 10 |
|
| 11 |
|
| 12 |
-
st.set_page_config(page_title="
|
| 13 |
|
| 14 |
|
| 15 |
#### sidebar section 1 ####
|
| 16 |
with st.sidebar:
|
| 17 |
-
book = st.radio("Choose
|
| 18 |
-
["
|
| 19 |
)
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
st.markdown(f"#### Have a conversation with {BOOK_NAME} by {AUTHOR_NAME} π")
|
| 27 |
|
|
|
|
|
|
|
| 28 |
|
| 29 |
|
|
|
|
| 30 |
|
| 31 |
##### functionss ####
|
| 32 |
@st.experimental_singleton(show_spinner=False)
|
| 33 |
-
def load_vectorstore():
|
| 34 |
# download from hugging face
|
| 35 |
-
cache_dir=
|
| 36 |
-
snapshot_download(repo_id="
|
| 37 |
repo_type="dataset",
|
| 38 |
revision="main",
|
| 39 |
-
allow_patterns=f"
|
| 40 |
cache_dir=cache_dir,
|
| 41 |
)
|
| 42 |
|
| 43 |
-
target_dir =
|
| 44 |
|
| 45 |
# Walk through the directory tree recursively
|
| 46 |
for root, dirs, files in os.walk(cache_dir):
|
|
@@ -49,11 +63,7 @@ def load_vectorstore():
|
|
| 49 |
# Get the full path of the target directory
|
| 50 |
target_path = os.path.join(root, target_dir)
|
| 51 |
|
| 52 |
-
|
| 53 |
-
embeddings = HuggingFaceInstructEmbeddings(
|
| 54 |
-
embed_instruction="Represent the book passage for retrieval: ",
|
| 55 |
-
query_instruction="Represent the question for retrieving supporting texts from the book passage: "
|
| 56 |
-
)
|
| 57 |
|
| 58 |
# load faiss
|
| 59 |
docsearch = FAISS.load_local(folder_path=target_path, embeddings=embeddings)
|
|
@@ -62,40 +72,42 @@ def load_vectorstore():
|
|
| 62 |
|
| 63 |
|
| 64 |
@st.experimental_memo(show_spinner=False)
|
| 65 |
-
def load_prompt(
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
{{
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
|
| 85 |
@st.experimental_singleton(show_spinner=False)
|
| 86 |
def load_chain():
|
| 87 |
-
llm =
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
vectorstore=load_vectorstore(),
|
| 94 |
-
k=8,
|
| 95 |
-
return_source_documents=True,
|
| 96 |
-
)
|
| 97 |
|
| 98 |
-
return
|
| 99 |
|
| 100 |
|
| 101 |
def get_answer(question):
|
|
@@ -128,23 +140,8 @@ def get_answer(question):
|
|
| 128 |
|
| 129 |
return answer, pages, extract
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
##### sidebar section 2 ####
|
| 135 |
-
|
| 136 |
-
api_key = st.text_input(label = "And paste your OpenAI API key here to get started",
|
| 137 |
-
type = "password",
|
| 138 |
-
help = "This isn't saved π"
|
| 139 |
-
)
|
| 140 |
-
os.environ["OPENAI_API_KEY"] = api_key
|
| 141 |
-
|
| 142 |
-
st.markdown("---")
|
| 143 |
-
|
| 144 |
-
st.info("Based on [Talk2Book](https://github.com/batmanscode/Talk2Book)")
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
|
| 149 |
##### main ####
|
| 150 |
user_input = st.text_input("Your question", "Who are you?", key="input")
|
|
@@ -160,18 +157,14 @@ ask = col2.button("Ask", type="primary")
|
|
| 160 |
|
| 161 |
if ask:
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
st.write(f"**{BOOK_NAME}:** What\'s going on? That's not the right API key")
|
| 172 |
-
st.stop()
|
| 173 |
-
|
| 174 |
-
st.write(f"**{BOOK_NAME}:** {answer}")
|
| 175 |
|
| 176 |
# sources
|
| 177 |
with st.expander(label = f"From pages: {pages}", expanded = False):
|
|
|
|
| 1 |
import os
|
| 2 |
import streamlit as st
|
| 3 |
|
| 4 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings
|
| 5 |
from langchain.vectorstores.faiss import FAISS
|
| 6 |
from langchain.chains import VectorDBQA
|
| 7 |
from huggingface_hub import snapshot_download
|
|
|
|
| 9 |
from langchain import PromptTemplate
|
| 10 |
|
| 11 |
|
| 12 |
+
st.set_page_config(page_title="CFA Level 1", page_icon="π")
|
| 13 |
|
| 14 |
|
| 15 |
#### sidebar section 1 ####
|
| 16 |
with st.sidebar:
|
| 17 |
+
book = st.radio("Choose an Embedding Model: ",
|
| 18 |
+
["Instruct", "Sbert"]
|
| 19 |
)
|
| 20 |
+
|
| 21 |
+
#load embedding models
|
| 22 |
+
@st.experimental_singleton(show_spinner=True)
|
| 23 |
+
def load_embedding_models(model):
|
| 24 |
+
|
| 25 |
+
if model == 'Sbert':
|
| 26 |
+
model_sbert = "sentence-transformers/all-mpnet-base-v2"
|
| 27 |
+
emb = HuggingFaceEmbeddings(model_name=model_sbert)
|
| 28 |
|
| 29 |
+
elif model == 'Instruct':
|
| 30 |
+
embed_instruction = "Represent the financial paragraph for document retrieval: "
|
| 31 |
+
query_instruction = "Represent the question for retrieving supporting documents: "
|
| 32 |
+
model_instr = "hkunlp/instructor-large"
|
| 33 |
+
emb = HuggingFaceInstructEmbeddings(model_name=model_instr,
|
| 34 |
+
embed_instruction=embed_instruction,
|
| 35 |
+
query_instruction=query_instruction)
|
| 36 |
|
| 37 |
+
return emb
|
|
|
|
| 38 |
|
| 39 |
+
st.title(f"Talk to CFA Level 1 Book")
|
| 40 |
+
st.markdown(f"#### Have a conversation with the CFA Curriculum by the CFA Institute π")
|
| 41 |
|
| 42 |
|
| 43 |
+
embeddings = load_embedding_models(book)
|
| 44 |
|
| 45 |
##### functionss ####
|
| 46 |
@st.experimental_singleton(show_spinner=False)
|
| 47 |
+
def load_vectorstore(embeddings):
|
| 48 |
# download from hugging face
|
| 49 |
+
cache_dir="cfa_level_1_cache"
|
| 50 |
+
snapshot_download(repo_id="nickmuchi/CFA_Level_1_Text_Embeddings",
|
| 51 |
repo_type="dataset",
|
| 52 |
revision="main",
|
| 53 |
+
allow_patterns=f"CFA_Level_1/*",
|
| 54 |
cache_dir=cache_dir,
|
| 55 |
)
|
| 56 |
|
| 57 |
+
target_dir = "book/CFA/*"
|
| 58 |
|
| 59 |
# Walk through the directory tree recursively
|
| 60 |
for root, dirs, files in os.walk(cache_dir):
|
|
|
|
| 63 |
# Get the full path of the target directory
|
| 64 |
target_path = os.path.join(root, target_dir)
|
| 65 |
|
| 66 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
# load faiss
|
| 69 |
docsearch = FAISS.load_local(folder_path=target_path, embeddings=embeddings)
|
|
|
|
| 72 |
|
| 73 |
|
| 74 |
@st.experimental_memo(show_spinner=False)
|
| 75 |
+
def load_prompt():
|
| 76 |
+
system_template="""You are an expert in finance, economics, investing, ethics, derivatives and markets.
|
| 77 |
+
Use the following pieces of context to answer the users question. If you don't know the answer,
|
| 78 |
+
just say that you don't know, don't try to make up an answer. Provide a source reference.
|
| 79 |
+
ALWAYS return a "sources" part in your answer.
|
| 80 |
+
The "sources" part should be a reference to the source of the documents from which you got your answer. List all sources used
|
| 81 |
+
|
| 82 |
+
The output should be a markdown code snippet formatted in the following schema:
|
| 83 |
+
```json
|
| 84 |
+
{{
|
| 85 |
+
answer: is foo
|
| 86 |
+
sources: xyz
|
| 87 |
+
}}
|
| 88 |
+
```
|
| 89 |
+
Begin!
|
| 90 |
+
----------------
|
| 91 |
+
{context}"""
|
| 92 |
+
messages = [
|
| 93 |
+
SystemMessagePromptTemplate.from_template(system_template),
|
| 94 |
+
HumanMessagePromptTemplate.from_template("{question}")
|
| 95 |
+
]
|
| 96 |
+
prompt = ChatPromptTemplate.from_messages(messages)
|
| 97 |
+
|
| 98 |
+
return prompt
|
| 99 |
|
| 100 |
|
| 101 |
@st.experimental_singleton(show_spinner=False)
|
| 102 |
def load_chain():
|
| 103 |
+
llm = ChatOpenAI(temperature=0)
|
| 104 |
+
|
| 105 |
+
qa = ChatVectorDBChain.from_llm(llm,
|
| 106 |
+
load_vectorstore(embeddings),
|
| 107 |
+
qa_prompt=load_prompt(),
|
| 108 |
+
return_source_documents=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
+
return qa
|
| 111 |
|
| 112 |
|
| 113 |
def get_answer(question):
|
|
|
|
| 140 |
|
| 141 |
return answer, pages, extract
|
| 142 |
|
|
|
|
|
|
|
|
|
|
| 143 |
##### sidebar section 2 ####
|
| 144 |
+
api_key = os.environ["OPENAI_API_KEY"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
##### main ####
|
| 147 |
user_input = st.text_input("Your question", "Who are you?", key="input")
|
|
|
|
| 157 |
|
| 158 |
if ask:
|
| 159 |
|
| 160 |
+
with st.spinner("this can take about a minute for your first question because some models have to be downloaded π₯Ίππ»ππ»"):
|
| 161 |
+
try:
|
| 162 |
+
answer, pages, extract = get_answer(question=user_input)
|
| 163 |
+
except:
|
| 164 |
+
st.write(f"Error with Download")
|
| 165 |
+
st.stop()
|
| 166 |
+
|
| 167 |
+
st.write(f"{answer}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
# sources
|
| 170 |
with st.expander(label = f"From pages: {pages}", expanded = False):
|