Update functions.py
Browse files- functions.py +117 -2
functions.py
CHANGED
|
@@ -21,7 +21,16 @@ import pickle, math
|
|
| 21 |
import wikipedia
|
| 22 |
from pyvis.network import Network
|
| 23 |
import torch
|
| 24 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
nltk.download('punkt')
|
| 27 |
|
|
@@ -32,6 +41,59 @@ time_str = time.strftime("%d%m%Y-%H%M%S")
|
|
| 32 |
HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem;
|
| 33 |
margin-bottom: 2.5rem">{}</div> """
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
@st.experimental_singleton(suppress_st_warning=True)
|
| 36 |
def load_models():
|
| 37 |
q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
|
@@ -40,12 +102,13 @@ def load_models():
|
|
| 40 |
kg_tokenizer = AutoTokenizer.from_pretrained("Babelscape/rebel-large")
|
| 41 |
q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
| 42 |
ner_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
|
|
|
| 43 |
sent_pipe = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer)
|
| 44 |
sum_pipe = pipeline("summarization",model="facebook/bart-large-cnn", tokenizer="facebook/bart-large-cnn",clean_up_tokenization_spaces=True)
|
| 45 |
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True)
|
| 46 |
cross_encoder = CrossEncoder('cross-encoder/mmarco-mMiniLMv2-L12-H384-v1') #cross-encoder/ms-marco-MiniLM-L-12-v2
|
| 47 |
|
| 48 |
-
return sent_pipe, sum_pipe, ner_pipe, cross_encoder, kg_model, kg_tokenizer
|
| 49 |
|
| 50 |
@st.experimental_singleton(suppress_st_warning=True)
|
| 51 |
def load_asr_model(asr_model_name):
|
|
@@ -62,6 +125,58 @@ def load_sbert(model_name):
|
|
| 62 |
|
| 63 |
return sbert
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
@st.experimental_memo(suppress_st_warning=True)
|
| 66 |
def embed_text(query,corpus,embedding_model):
|
| 67 |
|
|
|
|
| 21 |
import wikipedia
|
| 22 |
from pyvis.network import Network
|
| 23 |
import torch
|
| 24 |
+
from langchain.docstore.document import Document
|
| 25 |
+
from langchain.embeddings import HuggingFaceEmbeddings,HuggingFaceInstructEmbeddings
|
| 26 |
+
from langchain.vectorstores import Pinecone
|
| 27 |
+
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
|
| 28 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 29 |
+
from langchain.llms import OpenAI
|
| 30 |
+
from langchain import VectorDBQA
|
| 31 |
+
from langchain.chains.question_answering import load_qa_chain
|
| 32 |
+
from langchain.prompts import PromptTemplate
|
| 33 |
+
from langchain.prompts.base import RegexParser
|
| 34 |
|
| 35 |
nltk.download('punkt')
|
| 36 |
|
|
|
|
| 41 |
HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem;
|
| 42 |
margin-bottom: 2.5rem">{}</div> """
|
| 43 |
|
| 44 |
+
#Stuff Chain Type Prompt template
|
| 45 |
+
output_parser = RegexParser(
|
| 46 |
+
regex=r"(.*?)\nScore: (.*)",
|
| 47 |
+
output_keys=["answer", "score"],
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
template = """Given the following extracted parts of a long document and a question, create a final answer with references ("SOURCES").
|
| 51 |
+
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
|
| 52 |
+
ALWAYS return a "SOURCES" part in your answer.
|
| 53 |
+
|
| 54 |
+
In addition to giving an answer, also return a score of how fully it answered the user's question. This should be in the following format:
|
| 55 |
+
|
| 56 |
+
Question: [question here]
|
| 57 |
+
Helpful Answer: [answer here]
|
| 58 |
+
Score: [score between 0 and 100]
|
| 59 |
+
|
| 60 |
+
Begin!
|
| 61 |
+
|
| 62 |
+
Context:
|
| 63 |
+
---------
|
| 64 |
+
{summaries}
|
| 65 |
+
---------
|
| 66 |
+
Question: {question}
|
| 67 |
+
Helpful Answer:"""
|
| 68 |
+
|
| 69 |
+
#Refine Chain Type Prompt Template
|
| 70 |
+
refine_prompt_template = (
|
| 71 |
+
"The original question is as follows: {question}\n"
|
| 72 |
+
"We have provided an existing answer: {existing_answer}\n"
|
| 73 |
+
"We have the opportunity to refine the existing answer"
|
| 74 |
+
"(only if needed) with some more context below.\n"
|
| 75 |
+
"------------\n"
|
| 76 |
+
"{context_str}\n"
|
| 77 |
+
"------------\n"
|
| 78 |
+
"Given the new context, refine the original answer to better "
|
| 79 |
+
"answer the question. "
|
| 80 |
+
"If the context isn't useful, return the original answer."
|
| 81 |
+
)
|
| 82 |
+
refine_prompt = PromptTemplate(
|
| 83 |
+
input_variables=["question", "existing_answer", "context_str"],
|
| 84 |
+
template=refine_prompt_template,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
initial_qa_template = (
|
| 89 |
+
"Context information is below. \n"
|
| 90 |
+
"---------------------\n"
|
| 91 |
+
"{context_str}"
|
| 92 |
+
"\n---------------------\n"
|
| 93 |
+
"Given the context information and not prior knowledge, "
|
| 94 |
+
"answer the question: {question}\n.\n"
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
@st.experimental_singleton(suppress_st_warning=True)
|
| 98 |
def load_models():
|
| 99 |
q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
|
|
|
| 102 |
kg_tokenizer = AutoTokenizer.from_pretrained("Babelscape/rebel-large")
|
| 103 |
q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
| 104 |
ner_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 105 |
+
emb_tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-xl')
|
| 106 |
sent_pipe = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer)
|
| 107 |
sum_pipe = pipeline("summarization",model="facebook/bart-large-cnn", tokenizer="facebook/bart-large-cnn",clean_up_tokenization_spaces=True)
|
| 108 |
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True)
|
| 109 |
cross_encoder = CrossEncoder('cross-encoder/mmarco-mMiniLMv2-L12-H384-v1') #cross-encoder/ms-marco-MiniLM-L-12-v2
|
| 110 |
|
| 111 |
+
return sent_pipe, sum_pipe, ner_pipe, cross_encoder, kg_model, kg_tokenizer, emb_tokenizer
|
| 112 |
|
| 113 |
@st.experimental_singleton(suppress_st_warning=True)
|
| 114 |
def load_asr_model(asr_model_name):
|
|
|
|
| 125 |
|
| 126 |
return sbert
|
| 127 |
|
| 128 |
+
@st.experimental_memo(suppress_st_warning=True)
|
| 129 |
+
def embed_text(query,corpus,title,embedding_model,chain_type='stuff'):
|
| 130 |
+
|
| 131 |
+
'''Embed text and generate semantic search scores'''
|
| 132 |
+
|
| 133 |
+
index_id = "earnings-embeddings"
|
| 134 |
+
|
| 135 |
+
if 'hkunlp' in embedding_model:
|
| 136 |
+
|
| 137 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name=f'hkunlp/{embedding_model}',
|
| 138 |
+
query_instruction='Represent the Financial question for retrieving supporting paragraphs: ',
|
| 139 |
+
embed_instruction='Represent the Financial paragraph for retrieval: ')
|
| 140 |
+
|
| 141 |
+
else:
|
| 142 |
+
|
| 143 |
+
embeddings = HuggingFaceEmbeddings(model_name=f'sentence-transformers/{embedding_model}')
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
docsearch = Pinecone.from_texts(
|
| 148 |
+
corpus,
|
| 149 |
+
embeddings,
|
| 150 |
+
index_name = index_id,
|
| 151 |
+
namespace = f'{title}-earnings',
|
| 152 |
+
metadatas = [
|
| 153 |
+
{'source':i} for i in range(len(texts))]
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
docs = docsearch.similarity_search_with_score(query, k=3, namespace = f'{title}-earnings')
|
| 157 |
+
|
| 158 |
+
docs = [d[0] for d in docs]
|
| 159 |
+
|
| 160 |
+
if chain_type == 'stuff':
|
| 161 |
+
|
| 162 |
+
PROMPT = PromptTemplate(template=template,
|
| 163 |
+
input_variables=["summaries", "question"],
|
| 164 |
+
output_parser=output_parser)
|
| 165 |
+
|
| 166 |
+
chain = load_qa_with_sources_chain(OpenAI(temperature=0),
|
| 167 |
+
chain_type="stuff",
|
| 168 |
+
prompt=PROMPT,
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
answer = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
|
| 172 |
+
|
| 173 |
+
return answer['output_text']
|
| 174 |
+
|
| 175 |
+
elif chain_type == 'refine':
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
return hits
|
| 179 |
+
|
| 180 |
@st.experimental_memo(suppress_st_warning=True)
|
| 181 |
def embed_text(query,corpus,embedding_model):
|
| 182 |
|