Update functions.py
Browse files- functions.py +3 -314
functions.py
CHANGED
|
@@ -9,7 +9,7 @@ import plotly_express as px
|
|
| 9 |
import nltk
|
| 10 |
import plotly.graph_objects as go
|
| 11 |
from optimum.onnxruntime import ORTModelForSequenceClassification
|
| 12 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification,
|
| 13 |
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
| 14 |
import streamlit as st
|
| 15 |
import en_core_web_lg
|
|
@@ -73,18 +73,15 @@ def load_models():
|
|
| 73 |
'''Load and cache all the models to be used'''
|
| 74 |
q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
| 75 |
ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 76 |
-
kg_model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/rebel-large")
|
| 77 |
-
kg_tokenizer = AutoTokenizer.from_pretrained("Babelscape/rebel-large")
|
| 78 |
q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
| 79 |
ner_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 80 |
-
emb_tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-xl')
|
| 81 |
sent_pipe = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer)
|
| 82 |
sum_pipe = pipeline("summarization",model="philschmid/flan-t5-base-samsum",clean_up_tokenization_spaces=True)
|
| 83 |
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True)
|
| 84 |
cross_encoder = CrossEncoder('cross-encoder/mmarco-mMiniLMv2-L12-H384-v1') #cross-encoder/ms-marco-MiniLM-L-12-v2
|
| 85 |
sbert = SentenceTransformer('all-MiniLM-L6-v2')
|
| 86 |
|
| 87 |
-
return sent_pipe, sum_pipe, ner_pipe, cross_encoder,
|
| 88 |
|
| 89 |
@st.cache_resource
|
| 90 |
def get_spacy():
|
|
@@ -93,7 +90,7 @@ def get_spacy():
|
|
| 93 |
|
| 94 |
nlp = get_spacy()
|
| 95 |
|
| 96 |
-
sent_pipe, sum_pipe, ner_pipe, cross_encoder,
|
| 97 |
|
| 98 |
@st.cache_data
|
| 99 |
def get_yt_audio(url):
|
|
@@ -696,317 +693,9 @@ def fin_ext(text):
|
|
| 696 |
|
| 697 |
## Knowledge Graphs code
|
| 698 |
|
| 699 |
-
@st.cache_data
|
| 700 |
-
def extract_relations_from_model_output(text):
|
| 701 |
-
relations = []
|
| 702 |
-
relation, subject, relation, object_ = '', '', '', ''
|
| 703 |
-
text = text.strip()
|
| 704 |
-
current = 'x'
|
| 705 |
-
text_replaced = text.replace("<s>", "").replace("<pad>", "").replace("</s>", "")
|
| 706 |
-
for token in text_replaced.split():
|
| 707 |
-
if token == "<triplet>":
|
| 708 |
-
current = 't'
|
| 709 |
-
if relation != '':
|
| 710 |
-
relations.append({
|
| 711 |
-
'head': subject.strip(),
|
| 712 |
-
'type': relation.strip(),
|
| 713 |
-
'tail': object_.strip()
|
| 714 |
-
})
|
| 715 |
-
relation = ''
|
| 716 |
-
subject = ''
|
| 717 |
-
elif token == "<subj>":
|
| 718 |
-
current = 's'
|
| 719 |
-
if relation != '':
|
| 720 |
-
relations.append({
|
| 721 |
-
'head': subject.strip(),
|
| 722 |
-
'type': relation.strip(),
|
| 723 |
-
'tail': object_.strip()
|
| 724 |
-
})
|
| 725 |
-
object_ = ''
|
| 726 |
-
elif token == "<obj>":
|
| 727 |
-
current = 'o'
|
| 728 |
-
relation = ''
|
| 729 |
-
else:
|
| 730 |
-
if current == 't':
|
| 731 |
-
subject += ' ' + token
|
| 732 |
-
elif current == 's':
|
| 733 |
-
object_ += ' ' + token
|
| 734 |
-
elif current == 'o':
|
| 735 |
-
relation += ' ' + token
|
| 736 |
-
if subject != '' and relation != '' and object_ != '':
|
| 737 |
-
relations.append({
|
| 738 |
-
'head': subject.strip(),
|
| 739 |
-
'type': relation.strip(),
|
| 740 |
-
'tail': object_.strip()
|
| 741 |
-
})
|
| 742 |
-
return relations
|
| 743 |
-
|
| 744 |
-
def from_text_to_kb(text, model, tokenizer, article_url, span_length=128, article_title=None,
|
| 745 |
-
article_publish_date=None, verbose=False):
|
| 746 |
-
# tokenize whole text
|
| 747 |
-
inputs = tokenizer([text], return_tensors="pt")
|
| 748 |
-
|
| 749 |
-
# compute span boundaries
|
| 750 |
-
num_tokens = len(inputs["input_ids"][0])
|
| 751 |
-
if verbose:
|
| 752 |
-
print(f"Input has {num_tokens} tokens")
|
| 753 |
-
num_spans = math.ceil(num_tokens / span_length)
|
| 754 |
-
if verbose:
|
| 755 |
-
print(f"Input has {num_spans} spans")
|
| 756 |
-
overlap = math.ceil((num_spans * span_length - num_tokens) /
|
| 757 |
-
max(num_spans - 1, 1))
|
| 758 |
-
spans_boundaries = []
|
| 759 |
-
start = 0
|
| 760 |
-
for i in range(num_spans):
|
| 761 |
-
spans_boundaries.append([start + span_length * i,
|
| 762 |
-
start + span_length * (i + 1)])
|
| 763 |
-
start -= overlap
|
| 764 |
-
if verbose:
|
| 765 |
-
print(f"Span boundaries are {spans_boundaries}")
|
| 766 |
-
|
| 767 |
-
# transform input with spans
|
| 768 |
-
tensor_ids = [inputs["input_ids"][0][boundary[0]:boundary[1]]
|
| 769 |
-
for boundary in spans_boundaries]
|
| 770 |
-
tensor_masks = [inputs["attention_mask"][0][boundary[0]:boundary[1]]
|
| 771 |
-
for boundary in spans_boundaries]
|
| 772 |
-
inputs = {
|
| 773 |
-
"input_ids": torch.stack(tensor_ids),
|
| 774 |
-
"attention_mask": torch.stack(tensor_masks)
|
| 775 |
-
}
|
| 776 |
-
|
| 777 |
-
# generate relations
|
| 778 |
-
num_return_sequences = 3
|
| 779 |
-
gen_kwargs = {
|
| 780 |
-
"max_length": 256,
|
| 781 |
-
"length_penalty": 0,
|
| 782 |
-
"num_beams": 3,
|
| 783 |
-
"num_return_sequences": num_return_sequences
|
| 784 |
-
}
|
| 785 |
-
generated_tokens = model.generate(
|
| 786 |
-
**inputs,
|
| 787 |
-
**gen_kwargs,
|
| 788 |
-
)
|
| 789 |
-
|
| 790 |
-
# decode relations
|
| 791 |
-
decoded_preds = tokenizer.batch_decode(generated_tokens,
|
| 792 |
-
skip_special_tokens=False)
|
| 793 |
-
|
| 794 |
-
# create kb
|
| 795 |
-
kb = KB()
|
| 796 |
-
i = 0
|
| 797 |
-
for sentence_pred in decoded_preds:
|
| 798 |
-
current_span_index = i // num_return_sequences
|
| 799 |
-
relations = extract_relations_from_model_output(sentence_pred)
|
| 800 |
-
for relation in relations:
|
| 801 |
-
relation["meta"] = {
|
| 802 |
-
article_url: {
|
| 803 |
-
"spans": [spans_boundaries[current_span_index]]
|
| 804 |
-
}
|
| 805 |
-
}
|
| 806 |
-
kb.add_relation(relation, article_title, article_publish_date)
|
| 807 |
-
i += 1
|
| 808 |
-
|
| 809 |
-
return kb
|
| 810 |
-
|
| 811 |
def get_article(url):
|
| 812 |
article = Article(url)
|
| 813 |
article.download()
|
| 814 |
article.parse()
|
| 815 |
return article
|
| 816 |
|
| 817 |
-
def from_url_to_kb(url, model, tokenizer):
|
| 818 |
-
article = get_article(url)
|
| 819 |
-
config = {
|
| 820 |
-
"article_title": article.title,
|
| 821 |
-
"article_publish_date": article.publish_date
|
| 822 |
-
}
|
| 823 |
-
kb = from_text_to_kb(article.text, model, tokenizer, article.url, **config)
|
| 824 |
-
return kb
|
| 825 |
-
|
| 826 |
-
def get_news_links(query, lang="en", region="US", pages=1):
|
| 827 |
-
googlenews = GoogleNews(lang=lang, region=region)
|
| 828 |
-
googlenews.search(query)
|
| 829 |
-
all_urls = []
|
| 830 |
-
for page in range(pages):
|
| 831 |
-
googlenews.get_page(page)
|
| 832 |
-
all_urls += googlenews.get_links()
|
| 833 |
-
return list(set(all_urls))
|
| 834 |
-
|
| 835 |
-
def from_urls_to_kb(urls, model, tokenizer, verbose=False):
|
| 836 |
-
kb = KB()
|
| 837 |
-
if verbose:
|
| 838 |
-
print(f"{len(urls)} links to visit")
|
| 839 |
-
for url in urls:
|
| 840 |
-
if verbose:
|
| 841 |
-
print(f"Visiting {url}...")
|
| 842 |
-
try:
|
| 843 |
-
kb_url = from_url_to_kb(url, model, tokenizer)
|
| 844 |
-
kb.merge_with_kb(kb_url)
|
| 845 |
-
except ArticleException:
|
| 846 |
-
if verbose:
|
| 847 |
-
print(f" Couldn't download article at url {url}")
|
| 848 |
-
return kb
|
| 849 |
-
|
| 850 |
-
def save_network_html(kb, filename="network.html"):
|
| 851 |
-
# create network
|
| 852 |
-
net = Network(directed=True, width="700px", height="700px")
|
| 853 |
-
|
| 854 |
-
# nodes
|
| 855 |
-
color_entity = "#00FF00"
|
| 856 |
-
for e in kb.entities:
|
| 857 |
-
net.add_node(e, shape="circle", color=color_entity)
|
| 858 |
-
|
| 859 |
-
# edges
|
| 860 |
-
for r in kb.relations:
|
| 861 |
-
net.add_edge(r["head"], r["tail"],
|
| 862 |
-
title=r["type"], label=r["type"])
|
| 863 |
-
|
| 864 |
-
# save network
|
| 865 |
-
net.repulsion(
|
| 866 |
-
node_distance=200,
|
| 867 |
-
central_gravity=0.2,
|
| 868 |
-
spring_length=200,
|
| 869 |
-
spring_strength=0.05,
|
| 870 |
-
damping=0.09
|
| 871 |
-
)
|
| 872 |
-
net.set_edge_smooth('dynamic')
|
| 873 |
-
net.show(filename)
|
| 874 |
-
|
| 875 |
-
def save_kb(kb, filename):
|
| 876 |
-
with open(filename, "wb") as f:
|
| 877 |
-
pickle.dump(kb, f)
|
| 878 |
-
|
| 879 |
-
class CustomUnpickler(pickle.Unpickler):
|
| 880 |
-
def find_class(self, module, name):
|
| 881 |
-
if name == 'KB':
|
| 882 |
-
return KB
|
| 883 |
-
return super().find_class(module, name)
|
| 884 |
-
|
| 885 |
-
def load_kb(filename):
|
| 886 |
-
res = None
|
| 887 |
-
with open(filename, "rb") as f:
|
| 888 |
-
res = CustomUnpickler(f).load()
|
| 889 |
-
return res
|
| 890 |
-
|
| 891 |
-
class KB():
|
| 892 |
-
def __init__(self):
|
| 893 |
-
self.entities = {} # { entity_title: {...} }
|
| 894 |
-
self.relations = [] # [ head: entity_title, type: ..., tail: entity_title,
|
| 895 |
-
# meta: { article_url: { spans: [...] } } ]
|
| 896 |
-
self.sources = {} # { article_url: {...} }
|
| 897 |
-
|
| 898 |
-
def merge_with_kb(self, kb2):
|
| 899 |
-
for r in kb2.relations:
|
| 900 |
-
article_url = list(r["meta"].keys())[0]
|
| 901 |
-
source_data = kb2.sources[article_url]
|
| 902 |
-
self.add_relation(r, source_data["article_title"],
|
| 903 |
-
source_data["article_publish_date"])
|
| 904 |
-
|
| 905 |
-
def are_relations_equal(self, r1, r2):
|
| 906 |
-
return all(r1[attr] == r2[attr] for attr in ["head", "type", "tail"])
|
| 907 |
-
|
| 908 |
-
def exists_relation(self, r1):
|
| 909 |
-
return any(self.are_relations_equal(r1, r2) for r2 in self.relations)
|
| 910 |
-
|
| 911 |
-
def merge_relations(self, r2):
|
| 912 |
-
r1 = [r for r in self.relations
|
| 913 |
-
if self.are_relations_equal(r2, r)][0]
|
| 914 |
-
|
| 915 |
-
# if different article
|
| 916 |
-
article_url = list(r2["meta"].keys())[0]
|
| 917 |
-
if article_url not in r1["meta"]:
|
| 918 |
-
r1["meta"][article_url] = r2["meta"][article_url]
|
| 919 |
-
|
| 920 |
-
# if existing article
|
| 921 |
-
else:
|
| 922 |
-
spans_to_add = [span for span in r2["meta"][article_url]["spans"]
|
| 923 |
-
if span not in r1["meta"][article_url]["spans"]]
|
| 924 |
-
r1["meta"][article_url]["spans"] += spans_to_add
|
| 925 |
-
|
| 926 |
-
def get_wikipedia_data(self, candidate_entity):
|
| 927 |
-
try:
|
| 928 |
-
page = wikipedia.page(candidate_entity, auto_suggest=False)
|
| 929 |
-
entity_data = {
|
| 930 |
-
"title": page.title,
|
| 931 |
-
"url": page.url,
|
| 932 |
-
"summary": page.summary
|
| 933 |
-
}
|
| 934 |
-
return entity_data
|
| 935 |
-
except:
|
| 936 |
-
return None
|
| 937 |
-
|
| 938 |
-
def add_entity(self, e):
|
| 939 |
-
self.entities[e["title"]] = {k:v for k,v in e.items() if k != "title"}
|
| 940 |
-
|
| 941 |
-
def add_relation(self, r, article_title, article_publish_date):
|
| 942 |
-
# check on wikipedia
|
| 943 |
-
candidate_entities = [r["head"], r["tail"]]
|
| 944 |
-
entities = [self.get_wikipedia_data(ent) for ent in candidate_entities]
|
| 945 |
-
|
| 946 |
-
# if one entity does not exist, stop
|
| 947 |
-
if any(ent is None for ent in entities):
|
| 948 |
-
return
|
| 949 |
-
|
| 950 |
-
# manage new entities
|
| 951 |
-
for e in entities:
|
| 952 |
-
self.add_entity(e)
|
| 953 |
-
|
| 954 |
-
# rename relation entities with their wikipedia titles
|
| 955 |
-
r["head"] = entities[0]["title"]
|
| 956 |
-
r["tail"] = entities[1]["title"]
|
| 957 |
-
|
| 958 |
-
# add source if not in kb
|
| 959 |
-
article_url = list(r["meta"].keys())[0]
|
| 960 |
-
if article_url not in self.sources:
|
| 961 |
-
self.sources[article_url] = {
|
| 962 |
-
"article_title": article_title,
|
| 963 |
-
"article_publish_date": article_publish_date
|
| 964 |
-
}
|
| 965 |
-
|
| 966 |
-
# manage new relation
|
| 967 |
-
if not self.exists_relation(r):
|
| 968 |
-
self.relations.append(r)
|
| 969 |
-
else:
|
| 970 |
-
self.merge_relations(r)
|
| 971 |
-
|
| 972 |
-
def get_textual_representation(self):
|
| 973 |
-
res = ""
|
| 974 |
-
res += "### Entities\n"
|
| 975 |
-
for e in self.entities.items():
|
| 976 |
-
# shorten summary
|
| 977 |
-
e_temp = (e[0], {k:(v[:100] + "..." if k == "summary" else v) for k,v in e[1].items()})
|
| 978 |
-
res += f"- {e_temp}\n"
|
| 979 |
-
res += "\n"
|
| 980 |
-
res += "### Relations\n"
|
| 981 |
-
for r in self.relations:
|
| 982 |
-
res += f"- {r}\n"
|
| 983 |
-
res += "\n"
|
| 984 |
-
res += "### Sources\n"
|
| 985 |
-
for s in self.sources.items():
|
| 986 |
-
res += f"- {s}\n"
|
| 987 |
-
return res
|
| 988 |
-
|
| 989 |
-
def save_network_html(kb, filename="network.html"):
|
| 990 |
-
# create network
|
| 991 |
-
net = Network(directed=True, width="700px", height="700px", bgcolor="#eeeeee")
|
| 992 |
-
|
| 993 |
-
# nodes
|
| 994 |
-
color_entity = "#00FF00"
|
| 995 |
-
for e in kb.entities:
|
| 996 |
-
net.add_node(e, shape="circle", color=color_entity)
|
| 997 |
-
|
| 998 |
-
# edges
|
| 999 |
-
for r in kb.relations:
|
| 1000 |
-
net.add_edge(r["head"], r["tail"],
|
| 1001 |
-
title=r["type"], label=r["type"])
|
| 1002 |
-
|
| 1003 |
-
# save network
|
| 1004 |
-
net.repulsion(
|
| 1005 |
-
node_distance=200,
|
| 1006 |
-
central_gravity=0.2,
|
| 1007 |
-
spring_length=200,
|
| 1008 |
-
spring_strength=0.05,
|
| 1009 |
-
damping=0.09
|
| 1010 |
-
)
|
| 1011 |
-
net.set_edge_smooth('dynamic')
|
| 1012 |
-
net.show(filename)
|
|
|
|
| 9 |
import nltk
|
| 10 |
import plotly.graph_objects as go
|
| 11 |
from optimum.onnxruntime import ORTModelForSequenceClassification
|
| 12 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
|
| 13 |
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
| 14 |
import streamlit as st
|
| 15 |
import en_core_web_lg
|
|
|
|
| 73 |
'''Load and cache all the models to be used'''
|
| 74 |
q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
| 75 |
ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
|
|
|
|
|
|
| 76 |
q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
| 77 |
ner_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
|
|
|
| 78 |
sent_pipe = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer)
|
| 79 |
sum_pipe = pipeline("summarization",model="philschmid/flan-t5-base-samsum",clean_up_tokenization_spaces=True)
|
| 80 |
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True)
|
| 81 |
cross_encoder = CrossEncoder('cross-encoder/mmarco-mMiniLMv2-L12-H384-v1') #cross-encoder/ms-marco-MiniLM-L-12-v2
|
| 82 |
sbert = SentenceTransformer('all-MiniLM-L6-v2')
|
| 83 |
|
| 84 |
+
return sent_pipe, sum_pipe, ner_pipe, cross_encoder, sbert
|
| 85 |
|
| 86 |
@st.cache_resource
|
| 87 |
def get_spacy():
|
|
|
|
| 90 |
|
| 91 |
nlp = get_spacy()
|
| 92 |
|
| 93 |
+
sent_pipe, sum_pipe, ner_pipe, cross_encoder, sbert = load_models()
|
| 94 |
|
| 95 |
@st.cache_data
|
| 96 |
def get_yt_audio(url):
|
|
|
|
| 693 |
|
| 694 |
## Knowledge Graphs code
|
| 695 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 696 |
def get_article(url):
|
| 697 |
article = Article(url)
|
| 698 |
article.download()
|
| 699 |
article.parse()
|
| 700 |
return article
|
| 701 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|