Spaces:
Runtime error
Runtime error
update project
Browse files- .pre-commit-config.yaml +34 -0
- .python-version +1 -0
- app.py +186 -0
- poetry.lock +0 -0
- poetry.toml +2 -0
- pyproject.toml +53 -0
- requirements.txt +74 -0
.pre-commit-config.yaml
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# See https://pre-commit.com for more information
|
| 2 |
+
# See https://pre-commit.com/hooks.html for more hooks
|
| 3 |
+
repos:
|
| 4 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
| 5 |
+
rev: v4.4.0
|
| 6 |
+
hooks:
|
| 7 |
+
- id: trailing-whitespace
|
| 8 |
+
- id: end-of-file-fixer
|
| 9 |
+
- id: check-yaml
|
| 10 |
+
# - id: check-added-large-files
|
| 11 |
+
- repo: https://github.com/psf/black
|
| 12 |
+
rev: 23.3.0
|
| 13 |
+
hooks:
|
| 14 |
+
# - id: black
|
| 15 |
+
- id: black-jupyter
|
| 16 |
+
- repo: https://github.com/pycqa/isort
|
| 17 |
+
rev: 5.12.0
|
| 18 |
+
hooks:
|
| 19 |
+
- id: isort
|
| 20 |
+
name: isort (python)
|
| 21 |
+
- repo: https://github.com/asottile/pyupgrade
|
| 22 |
+
rev: v3.3.1
|
| 23 |
+
hooks:
|
| 24 |
+
- id: pyupgrade
|
| 25 |
+
args: [--py311-plus]
|
| 26 |
+
- repo: https://github.com/nbQA-dev/nbQA
|
| 27 |
+
rev: 1.7.0
|
| 28 |
+
hooks:
|
| 29 |
+
- id: nbqa-isort
|
| 30 |
+
- id: nbqa-black
|
| 31 |
+
- id: nbqa-pyupgrade
|
| 32 |
+
args: [--py311-plus]
|
| 33 |
+
default_language_version:
|
| 34 |
+
python: python3.11
|
.python-version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
3.11.1
|
app.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import numpy as np
|
| 4 |
+
from sklearn import datasets
|
| 5 |
+
from sklearn.linear_model import LogisticRegression
|
| 6 |
+
from sklearn.preprocessing import StandardScaler
|
| 7 |
+
|
| 8 |
+
rng = np.random.default_rng(0)
|
| 9 |
+
|
| 10 |
+
X, y = datasets.load_digits(return_X_y=True)
|
| 11 |
+
|
| 12 |
+
X = StandardScaler().fit_transform(X)
|
| 13 |
+
|
| 14 |
+
# classify small against large digits
|
| 15 |
+
y = (y > 4).astype(int)
|
| 16 |
+
|
| 17 |
+
# l1_ratio = 0.5 # L1 weight in the Elastic-Net regularization
|
| 18 |
+
|
| 19 |
+
md_description = """
|
| 20 |
+
# L1 Penalty and Sparsity in Logistic Regression
|
| 21 |
+
|
| 22 |
+
Comparison of the sparsity (percentage of zero coefficients) of solutions when L1, L2 and Elastic-Net penalty are used for different values of C. We can see that large values of C give more freedom to the model. Conversely, smaller values of C constrain the model more. In the L1 penalty case, this leads to sparser solutions. As expected, the Elastic-Net penalty sparsity is between that of L1 and L2.
|
| 23 |
+
|
| 24 |
+
We classify 8x8 images of digits into two classes: 0-4 against 5-9. The visualization shows coefficients of the models for varying C.
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def make_regression(l1_ratio):
|
| 29 |
+
fig, axes = plt.subplots(3, 3)
|
| 30 |
+
|
| 31 |
+
# Set regularization parameter
|
| 32 |
+
for i, (C, axes_row) in enumerate(zip((1, 0.1, 0.01), axes)):
|
| 33 |
+
# Increase tolerance for short training time
|
| 34 |
+
clf_l1_LR = LogisticRegression(C=C, penalty="l1", tol=0.01, solver="saga")
|
| 35 |
+
clf_l2_LR = LogisticRegression(C=C, penalty="l2", tol=0.01, solver="saga")
|
| 36 |
+
clf_en_LR = LogisticRegression(
|
| 37 |
+
C=C, penalty="elasticnet", solver="saga", l1_ratio=l1_ratio, tol=0.01
|
| 38 |
+
)
|
| 39 |
+
clf_l1_LR.fit(X, y)
|
| 40 |
+
clf_l2_LR.fit(X, y)
|
| 41 |
+
clf_en_LR.fit(X, y)
|
| 42 |
+
|
| 43 |
+
coef_l1_LR = clf_l1_LR.coef_.ravel()
|
| 44 |
+
coef_l2_LR = clf_l2_LR.coef_.ravel()
|
| 45 |
+
coef_en_LR = clf_en_LR.coef_.ravel()
|
| 46 |
+
|
| 47 |
+
# coef_l1_LR contains zeros due to the
|
| 48 |
+
# L1 sparsity inducing norm
|
| 49 |
+
sparsity_l1_LR = np.mean(coef_l1_LR == 0) * 100
|
| 50 |
+
sparsity_l2_LR = np.mean(coef_l2_LR == 0) * 100
|
| 51 |
+
sparsity_en_LR = np.mean(coef_en_LR == 0) * 100
|
| 52 |
+
|
| 53 |
+
print(f"C={C:.2f}")
|
| 54 |
+
print(f"{'Sparsity with L1 penalty:':<40} {sparsity_l1_LR:2f}%")
|
| 55 |
+
print(f"{'Sparsity with Elastic-Net penalty:':<40} {sparsity_en_LR:.2f}%")
|
| 56 |
+
print(f"{'Sparsity with L2 penalty:':<40} {sparsity_l2_LR:.2f}%")
|
| 57 |
+
print(f"{'Score with L1 penalty:':<40} {clf_l1_LR.score(X, y):.2f}")
|
| 58 |
+
print(f"{'Score with Elastic-Net penalty:':<40} {clf_en_LR.score(X, y):.2f}")
|
| 59 |
+
print(f"{'Score with L2 penalty:':<40} {clf_l2_LR.score(X, y):.2f}")
|
| 60 |
+
|
| 61 |
+
log_out = f"""
|
| 62 |
+
C={C:.2f}
|
| 63 |
+
{'Sparsity with L1 penalty:':<40} {sparsity_l1_LR:2f}%
|
| 64 |
+
{'Sparsity with Elastic-Net penalty:':<40} {sparsity_en_LR:.2f}%
|
| 65 |
+
{'Sparsity with L2 penalty:':<40} {sparsity_l2_LR:.2f}%
|
| 66 |
+
{'Score with L1 penalty:':<40} {clf_l1_LR.score(X, y):.2f}
|
| 67 |
+
{'Score with Elastic-Net penalty:':<40} {clf_en_LR.score(X, y):.2f}
|
| 68 |
+
{'Score with L2 penalty:':<40} {clf_l2_LR.score(X, y):.2f}
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
if i == 0:
|
| 72 |
+
axes_row[0].set_title("L1 penalty")
|
| 73 |
+
axes_row[1].set_title(f"Elastic-Net\nl1/l2_ratio = {l1_ratio}")
|
| 74 |
+
axes_row[2].set_title("L2 penalty")
|
| 75 |
+
|
| 76 |
+
for ax, coefs in zip(axes_row, [coef_l1_LR, coef_en_LR, coef_l2_LR]):
|
| 77 |
+
ax.imshow(
|
| 78 |
+
np.abs(coefs.reshape(8, 8)),
|
| 79 |
+
interpolation="nearest",
|
| 80 |
+
cmap="binary",
|
| 81 |
+
vmax=1,
|
| 82 |
+
vmin=0,
|
| 83 |
+
)
|
| 84 |
+
ax.set_xticks(())
|
| 85 |
+
ax.set_yticks(())
|
| 86 |
+
|
| 87 |
+
axes_row[0].set_ylabel(f"{C=}")
|
| 88 |
+
|
| 89 |
+
return fig, log_out, make_example(l1_ratio)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def make_example(l1_ratio):
|
| 93 |
+
return f"""
|
| 94 |
+
With the following code you can reproduce this example with the current values of the sliders and the same data in a notebook:
|
| 95 |
+
|
| 96 |
+
```python
|
| 97 |
+
import numpy as np
|
| 98 |
+
import matplotlib.pyplot as plt
|
| 99 |
+
|
| 100 |
+
from sklearn.linear_model import LogisticRegression
|
| 101 |
+
from sklearn import datasets
|
| 102 |
+
from sklearn.preprocessing import StandardScaler
|
| 103 |
+
|
| 104 |
+
rng = np.random.default_rng(0)
|
| 105 |
+
|
| 106 |
+
X, y = datasets.load_digits(return_X_y=True)
|
| 107 |
+
|
| 108 |
+
X = StandardScaler().fit_transform(X)
|
| 109 |
+
|
| 110 |
+
# classify small against large digits
|
| 111 |
+
y = (y > 4).astype(int)
|
| 112 |
+
|
| 113 |
+
l1_ratio = 0.5 # L1 weight in the Elastic-Net regularization
|
| 114 |
+
|
| 115 |
+
fig, axes = plt.subplots(3, 3)
|
| 116 |
+
|
| 117 |
+
# Set regularization parameter
|
| 118 |
+
for i, (C, axes_row) in enumerate(zip((1, 0.1, 0.01), axes)):
|
| 119 |
+
# Increase tolerance for short training time
|
| 120 |
+
clf_l1_LR = LogisticRegression(C=C, penalty="l1", tol=0.01, solver="saga")
|
| 121 |
+
clf_l2_LR = LogisticRegression(C=C, penalty="l2", tol=0.01, solver="saga")
|
| 122 |
+
clf_en_LR = LogisticRegression(
|
| 123 |
+
C=C, penalty="elasticnet", solver="saga", l1_ratio=l1_ratio, tol=0.01
|
| 124 |
+
)
|
| 125 |
+
clf_l1_LR.fit(X, y)
|
| 126 |
+
clf_l2_LR.fit(X, y)
|
| 127 |
+
clf_en_LR.fit(X, y)
|
| 128 |
+
|
| 129 |
+
coef_l1_LR = clf_l1_LR.coef_.ravel()
|
| 130 |
+
coef_l2_LR = clf_l2_LR.coef_.ravel()
|
| 131 |
+
coef_en_LR = clf_en_LR.coef_.ravel()
|
| 132 |
+
|
| 133 |
+
# coef_l1_LR contains zeros due to the
|
| 134 |
+
# L1 sparsity inducing norm
|
| 135 |
+
|
| 136 |
+
sparsity_l1_LR = np.mean(coef_l1_LR == 0) * 100
|
| 137 |
+
sparsity_l2_LR = np.mean(coef_l2_LR == 0) * 100
|
| 138 |
+
sparsity_en_LR = np.mean(coef_en_LR == 0) * 100
|
| 139 |
+
|
| 140 |
+
print(f"C={{C:.2f}}")
|
| 141 |
+
print(f"{{'Sparsity with L1 penalty:':<40}} {{sparsity_l1_LR:2f}}%\")
|
| 142 |
+
print(f"{{'Sparsity with Elastic-Net penalty:':<40}} {{sparsity_en_LR:.2f}}%")
|
| 143 |
+
print(f"{{'Sparsity with L2 penalty:':<40}} {{sparsity_l2_LR:.2f}}%")
|
| 144 |
+
print(f"{{'Score with L1 penalty:':<40}} {{clf_l1_LR.score(X, y):.2f}}")
|
| 145 |
+
print(f"{{'Score with Elastic-Net penalty:':<40}} {{clf_en_LR.score(X, y):.2f}}")
|
| 146 |
+
print(f"{{'Score with L2 penalty:':<40}} {{clf_l2_LR.score(X, y):.2f}}")
|
| 147 |
+
|
| 148 |
+
if i == 0:
|
| 149 |
+
axes_row[0].set_title("L1 penalty")
|
| 150 |
+
axes_row[1].set_title(f"Elastic-Net\\nl1/l2_ratio = {l1_ratio}")
|
| 151 |
+
axes_row[2].set_title("L2 penalty")
|
| 152 |
+
|
| 153 |
+
for ax, coefs in zip(axes_row, [coef_l1_LR, coef_en_LR, coef_l2_LR]):
|
| 154 |
+
ax.imshow(
|
| 155 |
+
np.abs(coefs.reshape(8, 8)),
|
| 156 |
+
interpolation="nearest",
|
| 157 |
+
cmap="binary",
|
| 158 |
+
vmax=1,
|
| 159 |
+
vmin=0,
|
| 160 |
+
)
|
| 161 |
+
ax.set_xticks(())
|
| 162 |
+
ax.set_yticks(())
|
| 163 |
+
|
| 164 |
+
axes_row[0].set_ylabel(f"{{C=}}")
|
| 165 |
+
plt.show()
|
| 166 |
+
```
|
| 167 |
+
"""
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
with gr.Blocks() as demo:
|
| 171 |
+
with gr.Row():
|
| 172 |
+
gr.Markdown(md_description)
|
| 173 |
+
with gr.Row():
|
| 174 |
+
with gr.Column():
|
| 175 |
+
ratio_slider = gr.Slider(minimum=0, maximum=1, label="L1/L2 ratio", step=0.1, value=0.5)
|
| 176 |
+
button = gr.Button(value="Generate")
|
| 177 |
+
with gr.Column():
|
| 178 |
+
plot = gr.Plot(label="Output")
|
| 179 |
+
log = gr.Markdown("")
|
| 180 |
+
|
| 181 |
+
with gr.Row():
|
| 182 |
+
example = gr.Markdown(make_example(ratio_slider.value))
|
| 183 |
+
button.click(make_regression, inputs=[ratio_slider], outputs=[plot, log, example])
|
| 184 |
+
ratio_slider.change(fn=make_regression, inputs=[ratio_slider], outputs=[plot, log, example])
|
| 185 |
+
|
| 186 |
+
demo.launch()
|
poetry.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
poetry.toml
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[virtualenvs]
|
| 2 |
+
in-project = true
|
pyproject.toml
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[tool.poetry]
|
| 2 |
+
name = "sklearn-decision-tree-regression"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = "Hugging Face Scikit Learn Demos"
|
| 5 |
+
authors = ["Niels van Galen Last <nvangalenlast@gmail.com>"]
|
| 6 |
+
license = "MIT"
|
| 7 |
+
readme = "README.md"
|
| 8 |
+
# packages = [{ include = "huggingface_sklearn" }]
|
| 9 |
+
|
| 10 |
+
[tool.poetry.dependencies]
|
| 11 |
+
python = ">=3.8.9,<3.12"
|
| 12 |
+
numpy = "^1.24.2"
|
| 13 |
+
scikit-learn = "^1.2.2"
|
| 14 |
+
matplotlib = "^3.7.1"
|
| 15 |
+
plotly = "^5.14.0"
|
| 16 |
+
gradio = "^3.24.1"
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
[tool.poetry.group.dev.dependencies]
|
| 20 |
+
black = { extras = ["jupyter"], version = "^23.3.0" }
|
| 21 |
+
isort = "^5.12.0"
|
| 22 |
+
pre-commit = "^3.2.1"
|
| 23 |
+
pylint = "^2.17.1"
|
| 24 |
+
pytest = "^7.2.2"
|
| 25 |
+
jupyterlab = "^3.6.3"
|
| 26 |
+
jupyterlab-widgets = "^3.0.7"
|
| 27 |
+
ipywidgets = "^8.0.6"
|
| 28 |
+
|
| 29 |
+
[build-system]
|
| 30 |
+
requires = ["poetry-core"]
|
| 31 |
+
build-backend = "poetry.core.masonry.api"
|
| 32 |
+
|
| 33 |
+
[tool.black]
|
| 34 |
+
line-length = 100
|
| 35 |
+
target_version = ['py311']
|
| 36 |
+
include = '\.py$'
|
| 37 |
+
|
| 38 |
+
[tool.isort]
|
| 39 |
+
profile = "black"
|
| 40 |
+
# force_single_line = "false"
|
| 41 |
+
force_sort_within_sections = "true"
|
| 42 |
+
line_length = 100
|
| 43 |
+
|
| 44 |
+
[tool.pylint]
|
| 45 |
+
[tool.pylint.messages_control]
|
| 46 |
+
#line-too-long='off'
|
| 47 |
+
disable = """
|
| 48 |
+
invalid-name,
|
| 49 |
+
logging-fstring-interpolation,
|
| 50 |
+
missing-class-docstring,
|
| 51 |
+
missing-function-docstring,
|
| 52 |
+
missing-module-docstring,
|
| 53 |
+
"""
|
requirements.txt
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
aiofiles==22.1.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 2 |
+
aiohttp==3.8.4 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 3 |
+
aiosignal==1.3.1 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 4 |
+
altair==4.2.2 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 5 |
+
anyio==3.6.2 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 6 |
+
async-timeout==4.0.2 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 7 |
+
attrs==22.2.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 8 |
+
certifi==2022.12.7 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 9 |
+
charset-normalizer==3.1.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 10 |
+
click==8.1.3 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 11 |
+
colorama==0.4.6 ; python_full_version >= "3.8.9" and python_version < "3.12" and platform_system == "Windows"
|
| 12 |
+
contourpy==1.0.7 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 13 |
+
cycler==0.11.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 14 |
+
entrypoints==0.4 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 15 |
+
fastapi==0.95.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 16 |
+
ffmpy==0.3.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 17 |
+
filelock==3.10.7 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 18 |
+
fonttools==4.39.3 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 19 |
+
frozenlist==1.3.3 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 20 |
+
fsspec==2023.3.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 21 |
+
gradio-client==0.0.5 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 22 |
+
gradio==3.24.1 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 23 |
+
h11==0.14.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 24 |
+
httpcore==0.16.3 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 25 |
+
httpx==0.23.3 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 26 |
+
huggingface-hub==0.13.3 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 27 |
+
idna==3.4 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 28 |
+
importlib-resources==5.12.0 ; python_full_version >= "3.8.9" and python_version < "3.10"
|
| 29 |
+
jinja2==3.1.2 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 30 |
+
joblib==1.2.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 31 |
+
jsonschema==4.17.3 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 32 |
+
kiwisolver==1.4.4 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 33 |
+
linkify-it-py==2.0.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 34 |
+
markdown-it-py==2.2.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 35 |
+
markdown-it-py[linkify]==2.2.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 36 |
+
markupsafe==2.1.2 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 37 |
+
matplotlib==3.7.1 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 38 |
+
mdit-py-plugins==0.3.3 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 39 |
+
mdurl==0.1.2 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 40 |
+
multidict==6.0.4 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 41 |
+
numpy==1.24.2 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 42 |
+
orjson==3.8.9 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 43 |
+
packaging==23.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 44 |
+
pandas==1.5.3 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 45 |
+
pillow==9.5.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 46 |
+
pkgutil-resolve-name==1.3.10 ; python_full_version >= "3.8.9" and python_version < "3.9"
|
| 47 |
+
plotly==5.14.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 48 |
+
pydantic==1.10.7 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 49 |
+
pydub==0.25.1 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 50 |
+
pyparsing==3.0.9 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 51 |
+
pyrsistent==0.19.3 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 52 |
+
python-dateutil==2.8.2 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 53 |
+
python-multipart==0.0.6 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 54 |
+
pytz==2023.3 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 55 |
+
pyyaml==6.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 56 |
+
requests==2.28.2 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 57 |
+
rfc3986[idna2008]==1.5.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 58 |
+
scikit-learn==1.2.2 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 59 |
+
scipy==1.9.3 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 60 |
+
semantic-version==2.10.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 61 |
+
six==1.16.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 62 |
+
sniffio==1.3.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 63 |
+
starlette==0.26.1 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 64 |
+
tenacity==8.2.2 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 65 |
+
threadpoolctl==3.1.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 66 |
+
toolz==0.12.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 67 |
+
tqdm==4.65.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 68 |
+
typing-extensions==4.5.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 69 |
+
uc-micro-py==1.0.1 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 70 |
+
urllib3==1.26.15 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 71 |
+
uvicorn==0.21.1 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 72 |
+
websockets==11.0 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 73 |
+
yarl==1.8.2 ; python_full_version >= "3.8.9" and python_version < "3.12"
|
| 74 |
+
zipp==3.15.0 ; python_full_version >= "3.8.9" and python_version < "3.10"
|