Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import ViltProcessor, ViltForVisualQuestionAnswering
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
| 6 |
+
model = ViltForVisualQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
| 7 |
+
|
| 8 |
+
def answer_question(image, text):
|
| 9 |
+
encoding = processor(image, text, return_tensors="pt")
|
| 10 |
+
|
| 11 |
+
# forward pass
|
| 12 |
+
with torch.no_grad():
|
| 13 |
+
outputs = model(**encoding)
|
| 14 |
+
|
| 15 |
+
logits = outputs.logits
|
| 16 |
+
idx = logits.argmax(-1).item()
|
| 17 |
+
predicted_answer = model.config.id2label[idx])
|
| 18 |
+
|
| 19 |
+
return predicted_answer
|
| 20 |
+
|
| 21 |
+
image = gr.inputs.Image(type="pil")
|
| 22 |
+
question = gr.inputs.Textbox(label="Question")
|
| 23 |
+
answer = gr.outputs.Textbox(label="Predicted answer")
|
| 24 |
+
gr.Interface(fn=classify_image, inputs=[image, question], outputs=answer, enable_queue=True).launch(debug=True)
|