Spaces:
Runtime error
Runtime error
| import torch | |
| import gradio as gr | |
| import spaces | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig | |
| import os | |
| from threading import Thread | |
| from accelerate import init_empty_weights | |
| max_memory = { | |
| 0: "30GiB", | |
| "cpu": "64GiB", | |
| } | |
| MODEL_LIST = ["THUDM/GLM-4-Z1-32B-0414"] | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| MODEL_ID = MODEL_LIST[0] | |
| MODEL_NAME = "GLM-4-Z1-32B-0414" | |
| TITLE = "<h1>3ML-bot (Text Only)</h1>" | |
| DESCRIPTION = f""" | |
| <center> | |
| <p>😊 A Multi-Lingual Analytical Chatbot. | |
| <br> | |
| 🚀 MODEL NOW: <a href="https://hf.co/nikravan/GLM4-Z-0414">{MODEL_NAME}</a> | |
| </center>""" | |
| CSS = """ | |
| h1 { | |
| text-align: center; | |
| display: block; | |
| } | |
| """ | |
| # Configure BitsAndBytes for 4-bit quantization | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_compute_dtype=torch.bfloat16, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_use_double_quant=True, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) | |
| def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float): | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_ID, | |
| torch_dtype=torch.bfloat16, | |
| low_cpu_mem_usage=True, | |
| trust_remote_code=True, | |
| quantization_config=quantization_config, | |
| device_map="auto", | |
| max_memory=max_memory, | |
| ) | |
| print(f'message is - {message}') | |
| print(f'history is - {history}') | |
| conversation = [] | |
| if len(history) > 0: | |
| for prompt, answer in history: | |
| conversation.extend([ | |
| {"role": "user", "content": prompt}, | |
| {"role": "assistant", "content": answer} | |
| ]) | |
| conversation.append({"role": "user", "content": message}) | |
| print(f"Conversation is -\n{conversation}") | |
| input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, | |
| return_tensors="pt", return_dict=True).to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| max_length=max_length, | |
| streamer=streamer, | |
| do_sample=True, | |
| top_p=top_p, | |
| top_k=top_k, | |
| temperature=temperature, | |
| repetition_penalty=penalty, | |
| eos_token_id=[151329, 151336, 151338], | |
| ) | |
| gen_kwargs = {**input_ids, **generate_kwargs} | |
| with torch.no_grad(): | |
| thread = Thread(target=model.generate, kwargs=gen_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| yield buffer | |
| chatbot = gr.Chatbot() | |
| chat_input = gr.Textbox( | |
| interactive=True, | |
| placeholder="Enter your message here...", | |
| show_label=False, | |
| ) | |
| EXAMPLES = [ | |
| ["Analyze the geopolitical implications of recent technological advancements in AI ."], | |
| ["¿Cuáles son los desafíos éticos más importantes en el desarrollo de la inteligencia artificial general?"], | |
| ["从经济学和社会学角度分析,人工智能将如何改变未来的就业市场?"], | |
| ["ما هي التحديات الرئيسية التي تواجه تطوير الذكاء الاصطناعي في العالم العربي؟"], | |
| ["नैतिक कृत्रिम बुद्धिमत्ता विकास में सबसे बड़ी चुनौतियाँ क्या हैं? विस्तार से समझाइए।"], | |
| ["Кои са основните предизвикателства пред разработването на изкуствен интелект в България и Източна Европа?"], | |
| ["Explain the potential risks and benefits of quantum computing in national security contexts."], | |
| ["分析气候变化对全球经济不平等的影响,并提出可能的解决方案。"], | |
| ] | |
| with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo: | |
| gr.HTML(TITLE) | |
| gr.HTML(DESCRIPTION) | |
| gr.ChatInterface( | |
| fn=stream_chat, | |
| textbox=chat_input, | |
| chatbot=chatbot, | |
| fill_height=True, | |
| additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
| additional_inputs=[ | |
| gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| value=0.8, | |
| label="Temperature", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=1024, | |
| maximum=8192, | |
| step=1, | |
| value=4096, | |
| label="Max Length", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=1.0, | |
| label="top_p", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=20, | |
| step=1, | |
| value=10, | |
| label="top_k", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=2.0, | |
| step=0.1, | |
| value=1.0, | |
| label="Repetition penalty", | |
| render=False, | |
| ), | |
| ], | |
| examples=EXAMPLES, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(api_open=False).launch(show_api=False, share=False) |