Spaces:
Build error
Build error
| import gradio as gr | |
| from transformers import RobertaForQuestionAnswering | |
| from transformers import BertForQuestionAnswering | |
| from transformers import AutoTokenizer | |
| from transformers import pipeline | |
| import soundfile as sf | |
| import torch | |
| from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
| import sox | |
| import subprocess | |
| def read_file_and_process(wav_file): | |
| filename = wav_file.split('.')[0] | |
| filename_16k = filename + "16k.wav" | |
| resampler(wav_file, filename_16k) | |
| speech, _ = sf.read(filename_16k) | |
| inputs = processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True) | |
| return inputs | |
| def resampler(input_file_path, output_file_path): | |
| command = ( | |
| f"ffmpeg -hide_banner -loglevel panic -i {input_file_path} -ar 16000 -ac 1 -bits_per_raw_sample 16 -vn " | |
| f"{output_file_path}" | |
| ) | |
| subprocess.call(command, shell=True) | |
| def parse_transcription(logits): | |
| predicted_ids = torch.argmax(logits, dim=-1) | |
| transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) | |
| return transcription | |
| def parse(wav_file): | |
| input_values = read_file_and_process(wav_file) | |
| with torch.no_grad(): | |
| logits = model(**input_values).logits | |
| user_question = parse_transcription(logits) | |
| return user_question | |
| model_id = "jonatasgrosman/wav2vec2-large-xlsr-53-persian" | |
| processor = Wav2Vec2Processor.from_pretrained(model_id) | |
| model = Wav2Vec2ForCTC.from_pretrained(model_id) | |
| model1 = RobertaForQuestionAnswering.from_pretrained("pedramyazdipoor/persian_xlm_roberta_large") | |
| tokenizer1 = AutoTokenizer.from_pretrained("pedramyazdipoor/persian_xlm_roberta_large") | |
| roberta_large = pipeline(task='question-answering', model=model1, tokenizer=tokenizer1) | |
| def Q_A(text=None, audio=None, context=None): | |
| if text == "": | |
| question = parse(audio) | |
| elif audio is None: | |
| question = text | |
| answer_pedram = roberta_large({"question":question, "context":context})['answer'] | |
| return answer_pedram | |
| # Create title, description and article strings | |
| title = "Question and answer based on Roberta model develop by nima asl toghiri" | |
| description = "سیستم پرسش و پاسخ مبتنی بر پردازش نوشتار و گفتار " | |
| article = "Roberta آموزش داده شده با مدل زبانی " | |
| demo = gr.Interface(fn=Q_A, # mapping function from input to output | |
| inputs=[gr.Textbox(label='پرسش خود را وارد کنید:', show_label=True, text_align='right', lines=2), | |
| gr.Audio(source="microphone", type="filepath", | |
| label="لطفا دکمه ضبط صدا را بزنید و شروع به صحبت کنید و بعذ از اتمام صحبت دوباره دکمه ضبط را فشار دهید.", | |
| show_download_button=True, | |
| show_edit_button=True,), | |
| gr.Textbox(label='متن منبع خود را وارد کنید', show_label=True, text_align='right', lines=8)], # what are the inputs? | |
| outputs=gr.Text(show_copy_button=True), # what are the outputs? | |
| # our fn has two outputs, therefore we have two outputs | |
| # Create examples list from "examples/" directory | |
| title=title, | |
| description=description, | |
| article=article) | |
| # Launch the demo! | |
| demo.launch(share=True) |