Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from datasets import load_dataset | |
| import os | |
| import spaces | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig | |
| import torch | |
| from threading import Thread | |
| from sentence_transformers import SentenceTransformer | |
| from datasets import load_dataset | |
| import time | |
| token = os.environ["HF_TOKEN"] | |
| ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") | |
| dataset = load_dataset("not-lain/wikipedia",revision = "embedded") | |
| data = dataset["train"] | |
| data = data.add_faiss_index("embeddings") # column name that has the embeddings of the dataset | |
| model_id = "meta-llama/Meta-Llama-3-8B-Instruct" | |
| # use quantization to lower GPU usage | |
| bnb_config = BitsAndBytesConfig( | |
| load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_id,token=token) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| quantization_config=bnb_config, | |
| token=token | |
| ) | |
| terminators = [ | |
| tokenizer.eos_token_id, | |
| tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
| ] | |
| SYS_PROMPT = """You are an assistant for answering questions. | |
| You are given the extracted parts of a long document and a question. Provide a conversational answer. | |
| If you don't know the answer, just say "I do not know." Don't make up an answer.""" | |
| def search(query: str, k: int = 3 ): | |
| """a function that embeds a new query and returns the most probable results""" | |
| embedded_query = ST.encode(query) # embed new query | |
| scores, retrieved_examples = data.get_nearest_examples( # retrieve results | |
| "embeddings", embedded_query, # compare our new embedded query with the dataset embeddings | |
| k=k # get only top k results | |
| ) | |
| return scores, retrieved_examples | |
| def format_prompt(prompt,retrieved_documents,k): | |
| """using the retrieved documents we will prompt the model to generate our responses""" | |
| PROMPT = f"Question:{prompt}\nContext:" | |
| for idx in range(k) : | |
| PROMPT+= f"{retrieved_documents['text'][idx]}\n" | |
| return PROMPT | |
| def talk(message,history): | |
| k = 1 # number of retrieved documents | |
| scores , retrieved_documents = search(prompt, k) | |
| formatted_prompt = format_prompt(prompt,retrieved_documents,k) | |
| formatted_prompt = formatted_prompt[:2000] # to avoid GPU OOM | |
| messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}] | |
| # tell the model to generate | |
| input_ids = tokenizer.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| return_tensors="pt" | |
| ).to(model.device) | |
| outputs = model.generate( | |
| input_ids, | |
| max_new_tokens=1024, | |
| eos_token_id=terminators, | |
| do_sample=True, | |
| temperature=0.6, | |
| top_p=0.9, | |
| ) | |
| streamer = TextIteratorStreamer( | |
| tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True | |
| ) | |
| generate_kwargs = dict( | |
| input_ids= input_ids, | |
| streamer=streamer, | |
| max_new_tokens=1024, | |
| do_sample=True, | |
| top_p=0.95, | |
| temperature=0.75, | |
| eos_token_id=terminators, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| print(outputs) | |
| yield "".join(outputs) | |
| # def talk(message, history): | |
| # print("history, ", history) | |
| # print("message ", message) | |
| # print("searching dataset ...") | |
| # retrieved_examples = search(message) | |
| # print("preparing prompt ...") | |
| # message, metadata = prepare_prompt(message, retrieved_examples) | |
| # resources = HEADER | |
| # print("preparing metadata ...") | |
| # for title, url in metadata: | |
| # resources += f"[{title}]({url}), " | |
| # print("preparing chat template ...") | |
| # chat = [] | |
| # for item in history: | |
| # chat.append({"role": "user", "content": item[0]}) | |
| # cleaned_past = item[1].split(HEADER)[0] | |
| # chat.append({"role": "assistant", "content": cleaned_past}) | |
| # chat.append({"role": "user", "content": message}) | |
| # messages = tokenizer.apply_chat_template( | |
| # chat, tokenize=False, add_generation_prompt=True | |
| # ) | |
| # print("chat template prepared, ", messages) | |
| # print("tokenizing input ...") | |
| # # Tokenize the messages string | |
| # model_inputs = tokenizer([messages], return_tensors="pt").to(device) | |
| # streamer = TextIteratorStreamer( | |
| # tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True | |
| # ) | |
| # generate_kwargs = dict( | |
| # model_inputs, | |
| # streamer=streamer, | |
| # max_new_tokens=1024, | |
| # do_sample=True, | |
| # top_p=0.95, | |
| # top_k=1000, | |
| # temperature=0.75, | |
| # num_beams=1, | |
| # ) | |
| # print("initializing thread ...") | |
| # t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| # t.start() | |
| # time.sleep(1) | |
| # # Initialize an empty string to store the generated text | |
| # partial_text = "" | |
| # i = 0 | |
| # while t.is_alive(): | |
| # try: | |
| # for new_text in streamer: | |
| # if new_text is not None: | |
| # partial_text += new_text | |
| # yield partial_text | |
| # except Exception as e: | |
| # print(f"retry number {i}\n LOGS:\n") | |
| # i+=1 | |
| # print(e, e.args) | |
| # partial_text += resources | |
| # yield partial_text | |
| TITLE = "# RAG" | |
| DESCRIPTION = """ | |
| A rag pipeline with a chatbot feature | |
| Resources used to build this project : | |
| * embedding model : https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1 | |
| * dataset : https://huggingface.co/datasets/not-lain/wikipedia | |
| * faiss docs : https://huggingface.co/docs/datasets/v2.18.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index | |
| * chatbot : https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct | |
| """ | |
| demo = gr.ChatInterface( | |
| fn=talk, | |
| chatbot=gr.Chatbot( | |
| show_label=True, | |
| show_share_button=True, | |
| show_copy_button=True, | |
| likeable=True, | |
| layout="bubble", | |
| bubble_full_width=False, | |
| ), | |
| theme="Soft", | |
| examples=[["what's anarchy ? "]], | |
| title=TITLE, | |
| description=DESCRIPTION, | |
| ) | |
| demo.launch(debug=True) | |