Spaces:
Runtime error
Runtime error
πwπ
Browse files- app.py +28 -52
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -7,7 +7,7 @@ import spaces
|
|
| 7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 8 |
import torch
|
| 9 |
from threading import Thread
|
| 10 |
-
from
|
| 11 |
from datasets import load_dataset
|
| 12 |
|
| 13 |
|
|
@@ -18,72 +18,48 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 18 |
torch_dtype=torch.float16,
|
| 19 |
token=token,
|
| 20 |
)
|
| 21 |
-
|
| 22 |
device = torch.device("cuda")
|
| 23 |
model = model.to(device)
|
| 24 |
-
RAG =
|
| 25 |
-
|
| 26 |
# prepare data
|
| 27 |
# since data is too big we will only select the first 3K lines
|
| 28 |
|
| 29 |
-
|
| 30 |
-
"wikimedia/wikipedia", "20231101.en", split="train", streaming=True
|
| 31 |
-
)
|
| 32 |
-
# init data
|
| 33 |
-
data = Dataset.from_dict({})
|
| 34 |
-
i = 0
|
| 35 |
-
for i, entry in enumerate(dataset):
|
| 36 |
-
# each entry has the following columns
|
| 37 |
-
# ['id', 'url', 'title', 'text']
|
| 38 |
-
data = data.add_item(entry)
|
| 39 |
-
if i == 3000:
|
| 40 |
-
break
|
| 41 |
-
# free memory
|
| 42 |
-
del dataset # we keep data
|
| 43 |
|
| 44 |
-
# index
|
| 45 |
-
|
| 46 |
-
RAG.index(documents, index_name="wikipedia", use_faiss=True)
|
| 47 |
-
# free memory
|
| 48 |
-
del documents
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
# 'rank' : "results are sorted using score and each is given a rank, also can be called place, 1 2 3 4 ..."
|
| 58 |
-
# 'document_id' : "no clue man i just got here"
|
| 59 |
-
# 'passage_id' : "or original row number"
|
| 60 |
-
# }
|
| 61 |
-
#
|
| 62 |
-
return [result["passage_id"] for result in results]
|
| 63 |
|
| 64 |
|
| 65 |
-
def prepare_prompt(query,
|
| 66 |
prompt = (
|
| 67 |
f"Query: {query}\nContinue to answer the query by using the Search Results:\n"
|
| 68 |
)
|
| 69 |
-
titles = []
|
| 70 |
urls = []
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
return prompt, (titles,urls)
|
| 79 |
|
| 80 |
|
| 81 |
@spaces.GPU
|
| 82 |
def talk(message, history):
|
| 83 |
-
|
| 84 |
-
message,metadata = prepare_prompt(message,
|
| 85 |
resources = "\nRESOURCES:\n"
|
| 86 |
-
for title,url in metadata:
|
| 87 |
resources += f"[{title}]({url}), "
|
| 88 |
chat = []
|
| 89 |
for item in history:
|
|
@@ -92,11 +68,11 @@ def talk(message, history):
|
|
| 92 |
cleaned_past = item[1].split("\nRESOURCES:\n")[0]
|
| 93 |
chat.append({"role": "assistant", "content": cleaned_past})
|
| 94 |
chat.append({"role": "user", "content": message})
|
| 95 |
-
messages =
|
| 96 |
# Tokenize the messages string
|
| 97 |
-
model_inputs =
|
| 98 |
streamer = TextIteratorStreamer(
|
| 99 |
-
|
| 100 |
)
|
| 101 |
generate_kwargs = dict(
|
| 102 |
model_inputs,
|
|
|
|
| 7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 8 |
import torch
|
| 9 |
from threading import Thread
|
| 10 |
+
from sentence_transformers import SentenceTransformer
|
| 11 |
from datasets import load_dataset
|
| 12 |
|
| 13 |
|
|
|
|
| 18 |
torch_dtype=torch.float16,
|
| 19 |
token=token,
|
| 20 |
)
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b-it", token=token)
|
| 22 |
device = torch.device("cuda")
|
| 23 |
model = model.to(device)
|
| 24 |
+
RAG = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
| 25 |
+
TOP_K = 3
|
| 26 |
# prepare data
|
| 27 |
# since data is too big we will only select the first 3K lines
|
| 28 |
|
| 29 |
+
data = load_dataset("not-lain/wikipedia-small-3000-embedded", subset="train")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
# index dataset
|
| 32 |
+
data.add_faiss_index("embedding", device=1)
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
@spaces.GPU
|
| 35 |
+
def search(query: str, k: int = TOP_K):
|
| 36 |
+
embedded_query = model.encode(query)
|
| 37 |
+
scores, retrieved_examples = data.get_nearest_examples(
|
| 38 |
+
"embedding", embedded_query, k=k
|
| 39 |
+
)
|
| 40 |
+
return retrieved_examples
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
+
def prepare_prompt(query, retrieved_examples):
|
| 44 |
prompt = (
|
| 45 |
f"Query: {query}\nContinue to answer the query by using the Search Results:\n"
|
| 46 |
)
|
|
|
|
| 47 |
urls = []
|
| 48 |
+
titles = retrieved_examples["title"][::-1]
|
| 49 |
+
texts = retrieved_examples["text"][::-1]
|
| 50 |
+
urls = retrieved_examples["url"][::-1]
|
| 51 |
+
titles = titles[::-1]
|
| 52 |
+
for i in range(TOP_K):
|
| 53 |
+
prompt += f"Title: {titles[i]}, Text: {texts[i]}\n"
|
| 54 |
+
return prompt, (titles, urls)
|
|
|
|
| 55 |
|
| 56 |
|
| 57 |
@spaces.GPU
|
| 58 |
def talk(message, history):
|
| 59 |
+
retrieved_examples = search(message)
|
| 60 |
+
message, metadata = prepare_prompt(message, retrieved_examples)
|
| 61 |
resources = "\nRESOURCES:\n"
|
| 62 |
+
for title, url in metadata:
|
| 63 |
resources += f"[{title}]({url}), "
|
| 64 |
chat = []
|
| 65 |
for item in history:
|
|
|
|
| 68 |
cleaned_past = item[1].split("\nRESOURCES:\n")[0]
|
| 69 |
chat.append({"role": "assistant", "content": cleaned_past})
|
| 70 |
chat.append({"role": "user", "content": message})
|
| 71 |
+
messages = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
| 72 |
# Tokenize the messages string
|
| 73 |
+
model_inputs = tokenizer([messages], return_tensors="pt").to(device)
|
| 74 |
streamer = TextIteratorStreamer(
|
| 75 |
+
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
| 76 |
)
|
| 77 |
generate_kwargs = dict(
|
| 78 |
model_inputs,
|
requirements.txt
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
spaces
|
| 2 |
torch==2.2.0
|
| 3 |
transformers
|
| 4 |
-
|
| 5 |
faiss-gpu
|
| 6 |
datasets
|
|
|
|
| 1 |
spaces
|
| 2 |
torch==2.2.0
|
| 3 |
transformers
|
| 4 |
+
sentence-transformers
|
| 5 |
faiss-gpu
|
| 6 |
datasets
|