update outpainting
Browse files
app.py
CHANGED
|
@@ -5,8 +5,7 @@ from loadimg import load_img
|
|
| 5 |
from torchvision import transforms
|
| 6 |
from transformers import AutoModelForImageSegmentation
|
| 7 |
from diffusers import FluxFillPipeline
|
| 8 |
-
from PIL import Image,
|
| 9 |
-
from diffusers.utils import load_image
|
| 10 |
|
| 11 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
| 12 |
|
|
@@ -38,169 +37,52 @@ def can_expand(source_width, source_height, target_width, target_height, alignme
|
|
| 38 |
|
| 39 |
def prepare_image_and_mask(
|
| 40 |
image,
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
alignment,
|
| 46 |
-
overlap_left,
|
| 47 |
-
overlap_right,
|
| 48 |
-
overlap_top,
|
| 49 |
-
overlap_bottom,
|
| 50 |
):
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
source = image.resize((new_width, new_height), Image.LANCZOS)
|
| 58 |
-
|
| 59 |
-
resize_percentage = 50
|
| 60 |
-
|
| 61 |
-
# Calculate new dimensions based on percentage
|
| 62 |
-
resize_factor = resize_percentage / 100
|
| 63 |
-
new_width = int(source.width * resize_factor)
|
| 64 |
-
new_height = int(source.height * resize_factor)
|
| 65 |
-
|
| 66 |
-
# Ensure minimum size of 64 pixels
|
| 67 |
-
new_width = max(new_width, 64)
|
| 68 |
-
new_height = max(new_height, 64)
|
| 69 |
-
|
| 70 |
-
# Resize the image
|
| 71 |
-
source = source.resize((new_width, new_height), Image.LANCZOS)
|
| 72 |
-
|
| 73 |
-
# Calculate the overlap in pixels based on the percentage
|
| 74 |
-
overlap_x = int(new_width * (overlap_percentage / 100))
|
| 75 |
-
overlap_y = int(new_height * (overlap_percentage / 100))
|
| 76 |
-
|
| 77 |
-
# Ensure minimum overlap of 1 pixel
|
| 78 |
-
overlap_x = max(overlap_x, 1)
|
| 79 |
-
overlap_y = max(overlap_y, 1)
|
| 80 |
-
|
| 81 |
-
# Calculate margins based on alignment
|
| 82 |
-
if alignment == "Middle":
|
| 83 |
-
margin_x = (target_size[0] - new_width) // 2
|
| 84 |
-
margin_y = (target_size[1] - new_height) // 2
|
| 85 |
-
elif alignment == "Left":
|
| 86 |
-
margin_x = 0
|
| 87 |
-
margin_y = (target_size[1] - new_height) // 2
|
| 88 |
-
elif alignment == "Right":
|
| 89 |
-
margin_x = target_size[0] - new_width
|
| 90 |
-
margin_y = (target_size[1] - new_height) // 2
|
| 91 |
-
elif alignment == "Top":
|
| 92 |
-
margin_x = (target_size[0] - new_width) // 2
|
| 93 |
-
margin_y = 0
|
| 94 |
-
elif alignment == "Bottom":
|
| 95 |
-
margin_x = (target_size[0] - new_width) // 2
|
| 96 |
-
margin_y = target_size[1] - new_height
|
| 97 |
-
|
| 98 |
-
# Adjust margins to eliminate gaps
|
| 99 |
-
margin_x = max(0, min(margin_x, target_size[0] - new_width))
|
| 100 |
-
margin_y = max(0, min(margin_y, target_size[1] - new_height))
|
| 101 |
-
|
| 102 |
-
# Create a new background image and paste the resized source image
|
| 103 |
-
background = Image.new("RGB", target_size, (255, 255, 255))
|
| 104 |
-
background.paste(source, (margin_x, margin_y))
|
| 105 |
-
|
| 106 |
-
# Create the mask
|
| 107 |
-
mask = Image.new("L", target_size, 255)
|
| 108 |
-
mask_draw = ImageDraw.Draw(mask)
|
| 109 |
-
|
| 110 |
-
# Calculate overlap areas
|
| 111 |
-
white_gaps_patch = 2
|
| 112 |
-
|
| 113 |
-
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
|
| 114 |
-
right_overlap = (
|
| 115 |
-
margin_x + new_width - overlap_x
|
| 116 |
-
if overlap_right
|
| 117 |
-
else margin_x + new_width - white_gaps_patch
|
| 118 |
-
)
|
| 119 |
-
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
|
| 120 |
-
bottom_overlap = (
|
| 121 |
-
margin_y + new_height - overlap_y
|
| 122 |
-
if overlap_bottom
|
| 123 |
-
else margin_y + new_height - white_gaps_patch
|
| 124 |
-
)
|
| 125 |
-
|
| 126 |
-
if alignment == "Left":
|
| 127 |
-
left_overlap = margin_x + overlap_x if overlap_left else margin_x
|
| 128 |
-
elif alignment == "Right":
|
| 129 |
-
right_overlap = (
|
| 130 |
-
margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
|
| 131 |
-
)
|
| 132 |
-
elif alignment == "Top":
|
| 133 |
-
top_overlap = margin_y + overlap_y if overlap_top else margin_y
|
| 134 |
-
elif alignment == "Bottom":
|
| 135 |
-
bottom_overlap = (
|
| 136 |
-
margin_y + new_height - overlap_y
|
| 137 |
-
if overlap_bottom
|
| 138 |
-
else margin_y + new_height
|
| 139 |
-
)
|
| 140 |
-
|
| 141 |
-
# Draw the mask
|
| 142 |
-
mask_draw.rectangle(
|
| 143 |
-
[(left_overlap, top_overlap), (right_overlap, bottom_overlap)], fill=0
|
| 144 |
)
|
| 145 |
-
|
|
|
|
| 146 |
return background, mask
|
| 147 |
|
| 148 |
|
| 149 |
def inpaint(
|
| 150 |
image,
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
prompt_input,
|
| 157 |
-
alignment,
|
| 158 |
-
overlap_left,
|
| 159 |
-
overlap_right,
|
| 160 |
-
overlap_top,
|
| 161 |
-
overlap_bottom,
|
| 162 |
progress=gr.Progress(track_tqdm=True),
|
| 163 |
):
|
| 164 |
background, mask = prepare_image_and_mask(
|
| 165 |
-
image,
|
| 166 |
-
width,
|
| 167 |
-
height,
|
| 168 |
-
overlap_percentage,
|
| 169 |
-
custom_resize_percentage,
|
| 170 |
-
alignment,
|
| 171 |
-
overlap_left,
|
| 172 |
-
overlap_right,
|
| 173 |
-
overlap_top,
|
| 174 |
-
overlap_bottom,
|
| 175 |
)
|
| 176 |
|
| 177 |
-
if not can_expand(background.width, background.height, width, height, alignment):
|
| 178 |
-
alignment = "Middle"
|
| 179 |
-
|
| 180 |
-
cnet_image = background.copy()
|
| 181 |
-
cnet_image.paste(0, (0, 0), mask)
|
| 182 |
-
|
| 183 |
-
final_prompt = prompt_input
|
| 184 |
-
|
| 185 |
# generator = torch.Generator(device="cuda").manual_seed(42)
|
| 186 |
|
| 187 |
result = pipe(
|
| 188 |
-
prompt=
|
| 189 |
-
height=height,
|
| 190 |
-
width=width,
|
| 191 |
-
image=
|
| 192 |
mask_image=mask,
|
| 193 |
-
num_inference_steps=
|
| 194 |
guidance_scale=30,
|
| 195 |
).images[0]
|
| 196 |
|
| 197 |
result = result.convert("RGBA")
|
| 198 |
-
|
| 199 |
|
| 200 |
-
return cnet_image
|
| 201 |
|
| 202 |
-
|
| 203 |
-
@spaces.GPU
|
| 204 |
def rmbg(image, url):
|
| 205 |
if image is None:
|
| 206 |
image = url
|
|
@@ -217,16 +99,28 @@ def rmbg(image, url):
|
|
| 217 |
return image
|
| 218 |
|
| 219 |
|
| 220 |
-
|
| 221 |
-
|
|
|
|
|
|
|
| 222 |
|
| 223 |
|
| 224 |
rmbg_tab = gr.Interface(
|
| 225 |
-
fn=
|
| 226 |
)
|
| 227 |
|
| 228 |
outpaint_tab = gr.Interface(
|
| 229 |
-
fn=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
)
|
| 231 |
|
| 232 |
demo = gr.TabbedInterface(
|
|
|
|
| 5 |
from torchvision import transforms
|
| 6 |
from transformers import AutoModelForImageSegmentation
|
| 7 |
from diffusers import FluxFillPipeline
|
| 8 |
+
from PIL import Image, ImageOps
|
|
|
|
| 9 |
|
| 10 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
| 11 |
|
|
|
|
| 37 |
|
| 38 |
def prepare_image_and_mask(
|
| 39 |
image,
|
| 40 |
+
padding_top=0,
|
| 41 |
+
padding_bottom=0,
|
| 42 |
+
padding_left=0,
|
| 43 |
+
padding_right=0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
):
|
| 45 |
+
image = load_img(image).convert("RGB")
|
| 46 |
+
# expand image (left,top,right,bottom)
|
| 47 |
+
background = ImageOps.expand(
|
| 48 |
+
image,
|
| 49 |
+
border=(padding_left, padding_top, padding_right, padding_bottom),
|
| 50 |
+
fill="white",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
)
|
| 52 |
+
mask = Image.new("RGB", image.size, "black")
|
| 53 |
+
mask = ImageOps.expand(mask, border=(0, 20, 0, 0), fill="white")
|
| 54 |
return background, mask
|
| 55 |
|
| 56 |
|
| 57 |
def inpaint(
|
| 58 |
image,
|
| 59 |
+
padding_top=0,
|
| 60 |
+
padding_bottom=0,
|
| 61 |
+
padding_left=0,
|
| 62 |
+
padding_right=0,
|
| 63 |
+
prompt="",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
progress=gr.Progress(track_tqdm=True),
|
| 65 |
):
|
| 66 |
background, mask = prepare_image_and_mask(
|
| 67 |
+
image, padding_top, padding_bottom, padding_left, padding_right
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
)
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
# generator = torch.Generator(device="cuda").manual_seed(42)
|
| 71 |
|
| 72 |
result = pipe(
|
| 73 |
+
prompt=prompt,
|
| 74 |
+
height=background.height,
|
| 75 |
+
width=background.width,
|
| 76 |
+
image=background,
|
| 77 |
mask_image=mask,
|
| 78 |
+
num_inference_steps=28,
|
| 79 |
guidance_scale=30,
|
| 80 |
).images[0]
|
| 81 |
|
| 82 |
result = result.convert("RGBA")
|
| 83 |
+
return result
|
| 84 |
|
|
|
|
| 85 |
|
|
|
|
|
|
|
| 86 |
def rmbg(image, url):
|
| 87 |
if image is None:
|
| 88 |
image = url
|
|
|
|
| 99 |
return image
|
| 100 |
|
| 101 |
|
| 102 |
+
@spaces.GPU
|
| 103 |
+
def main(*args, **kwargs):
|
| 104 |
+
print(args, kwargs)
|
| 105 |
+
return None
|
| 106 |
|
| 107 |
|
| 108 |
rmbg_tab = gr.Interface(
|
| 109 |
+
fn=main, inputs=["image", "text"], outputs=["image"], api_name="rmbg"
|
| 110 |
)
|
| 111 |
|
| 112 |
outpaint_tab = gr.Interface(
|
| 113 |
+
fn=main,
|
| 114 |
+
inputs=[
|
| 115 |
+
"image",
|
| 116 |
+
gr.Slider(label="padding top"),
|
| 117 |
+
gr.Slider(label="padding bottom"),
|
| 118 |
+
gr.Slider(label="padding left"),
|
| 119 |
+
gr.Slider(label="padding right"),
|
| 120 |
+
gr.Text(label="prompt"),
|
| 121 |
+
],
|
| 122 |
+
outputs=["image"],
|
| 123 |
+
api_name="outpainting",
|
| 124 |
)
|
| 125 |
|
| 126 |
demo = gr.TabbedInterface(
|