Commit
·
0d0e451
1
Parent(s):
c15a10c
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
+
import sys
|
| 5 |
+
import torch
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
|
| 8 |
+
os.system("git clone https://github.com/luost26/diffusion-point-cloud")
|
| 9 |
+
sys.path.append("diffusion-point-cloud")
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
from models.vae_gaussian import *
|
| 13 |
+
from models.vae_flow import *
|
| 14 |
+
|
| 15 |
+
airplane=network_pkl=hf_hub_download("SerdarHelli/diffusion-point-cloud", filename="GEN_airplane.pt",revision="main")
|
| 16 |
+
chair=network_pkl=hf_hub_download("SerdarHelli/diffusion-point-cloud", filename="GEN_chair.pt",revision="main")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
ckpt_airplane = torch.load(airplane)
|
| 20 |
+
ckpt_chair = torch.load(chair)
|
| 21 |
+
|
| 22 |
+
def normalize_point_clouds(pcs,mode):
|
| 23 |
+
if mode is None:
|
| 24 |
+
return pcs
|
| 25 |
+
for i in range(pcs.size(0)):
|
| 26 |
+
pc = pcs[i]
|
| 27 |
+
if mode == 'shape_unit':
|
| 28 |
+
shift = pc.mean(dim=0).reshape(1, 3)
|
| 29 |
+
scale = pc.flatten().std().reshape(1, 1)
|
| 30 |
+
elif mode == 'shape_bbox':
|
| 31 |
+
pc_max, _ = pc.max(dim=0, keepdim=True) # (1, 3)
|
| 32 |
+
pc_min, _ = pc.min(dim=0, keepdim=True) # (1, 3)
|
| 33 |
+
shift = ((pc_min + pc_max) / 2).view(1, 3)
|
| 34 |
+
scale = (pc_max - pc_min).max().reshape(1, 1) / 2
|
| 35 |
+
pc = (pc - shift) / scale
|
| 36 |
+
pcs[i] = pc
|
| 37 |
+
return pcs
|
| 38 |
+
|
| 39 |
+
def predict(Seed,ckpt):
|
| 40 |
+
if Seed==None:
|
| 41 |
+
Seed=777
|
| 42 |
+
seed_all(Seed)
|
| 43 |
+
|
| 44 |
+
if ckpt['args'].model == 'gaussian':
|
| 45 |
+
model = GaussianVAE(ckpt['args']).to("cuda")
|
| 46 |
+
elif ckpt['args'].model == 'flow':
|
| 47 |
+
model = FlowVAE(ckpt['args']).to("cuda")
|
| 48 |
+
|
| 49 |
+
model.load_state_dict(ckpt['state_dict'])
|
| 50 |
+
# Generate Point Clouds
|
| 51 |
+
gen_pcs = []
|
| 52 |
+
with torch.no_grad():
|
| 53 |
+
z = torch.randn([1, ckpt['args'].latent_dim]).to("cuda")
|
| 54 |
+
x = model.sample(z, 2048, flexibility=ckpt['args'].flexibility)
|
| 55 |
+
gen_pcs.append(x.detach().cpu())
|
| 56 |
+
gen_pcs = torch.cat(gen_pcs, dim=0)[:1]
|
| 57 |
+
gen_pcs = normalize_point_clouds(gen_pcs, mode="shape_bbox")
|
| 58 |
+
|
| 59 |
+
return gen_pcs[0]
|
| 60 |
+
|
| 61 |
+
def generate(seed,value):
|
| 62 |
+
if value=="Airplane":
|
| 63 |
+
ckpt=ckpt_airplane
|
| 64 |
+
elif value=="Chair":
|
| 65 |
+
ckpt=ckpt_chair
|
| 66 |
+
else :
|
| 67 |
+
ckpt=ckpt_airplane
|
| 68 |
+
|
| 69 |
+
print(value)
|
| 70 |
+
colors=(238, 75, 43)
|
| 71 |
+
points=predict(seed,ckpt)
|
| 72 |
+
num_points=points.shape[0]
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
fig = go.Figure(
|
| 76 |
+
data=[
|
| 77 |
+
go.Scatter3d(
|
| 78 |
+
x=points[:,0], y=points[:,1], z=points[:,2],
|
| 79 |
+
mode='markers',
|
| 80 |
+
marker=dict(size=1, color=colors)
|
| 81 |
+
)
|
| 82 |
+
],
|
| 83 |
+
layout=dict(
|
| 84 |
+
scene=dict(
|
| 85 |
+
xaxis=dict(visible=False),
|
| 86 |
+
yaxis=dict(visible=False),
|
| 87 |
+
zaxis=dict(visible=False)
|
| 88 |
+
)
|
| 89 |
+
)
|
| 90 |
+
)
|
| 91 |
+
return fig
|
| 92 |
+
markdown=f'''
|
| 93 |
+
# Diffusion Probabilistic Models for 3D Point Cloud Generation
|
| 94 |
+
|
| 95 |
+
[[The Paper](https://arxiv.org/abs/2103.01458)] [[Original Code](https://github.com/luost26/diffusion-point-cloud)]
|
| 96 |
+
|
| 97 |
+
The space demo for our CVPR 2021 paper "Diffusion Probabilistic Models for 3D Point Cloud Generation".
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
'''
|
| 101 |
+
with gr.Blocks() as demo:
|
| 102 |
+
with gr.Column():
|
| 103 |
+
with gr.Row():
|
| 104 |
+
gr.Markdown(markdown)
|
| 105 |
+
with gr.Row():
|
| 106 |
+
seed = gr.Slider( minimum=0, maximum=2**16,label='Seed')
|
| 107 |
+
value=gr.Dropdown(choices=["Airplane","Chair"],label="Choose Model Type")
|
| 108 |
+
|
| 109 |
+
btn = gr.Button(value="Generate")
|
| 110 |
+
point_cloud = gr.Plot()
|
| 111 |
+
demo.load(generate, [seed,value], point_cloud)
|
| 112 |
+
btn.click(generate, [seed,value], point_cloud)
|
| 113 |
+
|
| 114 |
+
demo.launch()
|