Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Tuple
|
| 3 |
+
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from transformers import (
|
| 9 |
+
AutoModelForCausalLM,
|
| 10 |
+
AutoTokenizer,
|
| 11 |
+
VisionEncoderDecoderModel,
|
| 12 |
+
TrOCRProcessor,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
TITLE = "Picture to Problem Solver"
|
| 17 |
+
DESCRIPTION = (
|
| 18 |
+
"Upload an image. I’ll read the text and a math/code/science-trained AI will help answer your question."
|
| 19 |
+
"\n\n⚠️ Note: facebook/MobileLLM-R1-950M is released for non-commercial research use."
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# ---------------------------
|
| 23 |
+
# Load OCR (TrOCR)
|
| 24 |
+
# ---------------------------
|
| 25 |
+
# Use the "printed" variant for typed/scanned text.
|
| 26 |
+
# If you expect handwriting, switch to: microsoft/trocr-base-handwritten
|
| 27 |
+
OCR_MODEL_ID = os.getenv("OCR_MODEL_ID", "microsoft/trocr-base-printed")
|
| 28 |
+
ocr_processor = TrOCRProcessor.from_pretrained(OCR_MODEL_ID)
|
| 29 |
+
ocr_model = VisionEncoderDecoderModel.from_pretrained(OCR_MODEL_ID)
|
| 30 |
+
ocr_model.eval()
|
| 31 |
+
|
| 32 |
+
# ---------------------------
|
| 33 |
+
# Load MobileLLM
|
| 34 |
+
# ---------------------------
|
| 35 |
+
LLM_MODEL_ID = os.getenv("LLM_MODEL_ID", "facebook/MobileLLM-R1-950M")
|
| 36 |
+
|
| 37 |
+
# Device & dtype selection that plays nice on Spaces
|
| 38 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 39 |
+
# Keep dtype conservative to avoid OOM on CPU Spaces
|
| 40 |
+
torch_dtype = torch.bfloat16 if (device == "cuda" and torch.cuda.is_bf16_supported()) else torch.float32
|
| 41 |
+
|
| 42 |
+
llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_ID, use_fast=True)
|
| 43 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 44 |
+
LLM_MODEL_ID,
|
| 45 |
+
torch_dtype=torch_dtype,
|
| 46 |
+
low_cpu_mem_usage=True,
|
| 47 |
+
device_map="auto" if device == "cuda" else None,
|
| 48 |
+
)
|
| 49 |
+
llm_model.eval()
|
| 50 |
+
if device == "cpu":
|
| 51 |
+
llm_model.to(device)
|
| 52 |
+
|
| 53 |
+
# Ensure EOS/BOS tokens exist
|
| 54 |
+
eos_token_id = llm_tokenizer.eos_token_id
|
| 55 |
+
if eos_token_id is None:
|
| 56 |
+
# Fallback: add one if truly missing (rare)
|
| 57 |
+
llm_tokenizer.add_special_tokens({"eos_token": "</s>"})
|
| 58 |
+
llm_model.resize_token_embeddings(len(llm_tokenizer))
|
| 59 |
+
eos_token_id = llm_tokenizer.eos_token_id
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
SYSTEM_INSTRUCTION = (
|
| 63 |
+
"You are a precise, step-by-step technical assistant. "
|
| 64 |
+
"You excel at math, programming (Python, C++), and scientific reasoning. "
|
| 65 |
+
"Be concise, show steps when helpful, and avoid hallucinations. "
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
USER_PROMPT_TEMPLATE = (
|
| 69 |
+
"Extracted text from the image:\n"
|
| 70 |
+
"-----------------------------\n"
|
| 71 |
+
"{ocr_text}\n"
|
| 72 |
+
"-----------------------------\n"
|
| 73 |
+
"{question_hint}"
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
def build_prompt(ocr_text: str, user_question: str) -> str:
|
| 77 |
+
if user_question and user_question.strip():
|
| 78 |
+
q = f"User question: {user_question.strip()}"
|
| 79 |
+
else:
|
| 80 |
+
q = "Please summarize the key information and explain any math/code/science content."
|
| 81 |
+
|
| 82 |
+
return f"{SYSTEM_INSTRUCTION}\n\n" + USER_PROMPT_TEMPLATE.format(
|
| 83 |
+
ocr_text=ocr_text.strip() if ocr_text else "(no text detected)",
|
| 84 |
+
question_hint=q,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
@torch.inference_mode()
|
| 89 |
+
def run_pipeline(
|
| 90 |
+
image: Image.Image,
|
| 91 |
+
question: str,
|
| 92 |
+
max_new_tokens: int = 256,
|
| 93 |
+
temperature: float = 0.2,
|
| 94 |
+
top_p: float = 0.9,
|
| 95 |
+
) -> Tuple[str, str]:
|
| 96 |
+
"""
|
| 97 |
+
Returns:
|
| 98 |
+
(extracted_text, model_answer)
|
| 99 |
+
"""
|
| 100 |
+
if image is None:
|
| 101 |
+
return "", "Please upload an image."
|
| 102 |
+
|
| 103 |
+
# --- OCR ---
|
| 104 |
+
# TrOCR wants pixel_values prepared by its processor
|
| 105 |
+
pixel_values = ocr_processor(images=image, return_tensors="pt").pixel_values
|
| 106 |
+
with torch.inference_mode():
|
| 107 |
+
ocr_ids = ocr_model.generate(pixel_values, max_new_tokens=256)
|
| 108 |
+
extracted_text = ocr_processor.batch_decode(ocr_ids, skip_special_tokens=True)[0].strip()
|
| 109 |
+
|
| 110 |
+
# --- Build prompt for LLM ---
|
| 111 |
+
prompt = build_prompt(extracted_text, question)
|
| 112 |
+
|
| 113 |
+
# --- LLM Inference ---
|
| 114 |
+
inputs = llm_tokenizer(prompt, return_tensors="pt")
|
| 115 |
+
if device == "cuda":
|
| 116 |
+
inputs = {k: v.to(llm_model.device) for k, v in inputs.items()}
|
| 117 |
+
else:
|
| 118 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 119 |
+
|
| 120 |
+
generation_kwargs = dict(
|
| 121 |
+
max_new_tokens=max_new_tokens,
|
| 122 |
+
do_sample=True if temperature > 0 else False,
|
| 123 |
+
temperature=max(0.0, min(temperature, 1.5)),
|
| 124 |
+
top_p=max(0.1, min(top_p, 1.0)),
|
| 125 |
+
eos_token_id=eos_token_id,
|
| 126 |
+
pad_token_id=llm_tokenizer.eos_token_id, # keep decoding clean
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
output_ids = llm_model.generate(**inputs, **generation_kwargs)
|
| 130 |
+
# We only want the newly generated part for readability
|
| 131 |
+
gen_text = llm_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 132 |
+
|
| 133 |
+
# Optional: strip the original prompt if the model echoes it
|
| 134 |
+
if gen_text.startswith(prompt):
|
| 135 |
+
gen_text = gen_text[len(prompt):].lstrip()
|
| 136 |
+
|
| 137 |
+
return extracted_text, gen_text
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def demo_ui():
|
| 141 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 142 |
+
gr.Markdown(f"# {TITLE}")
|
| 143 |
+
gr.Markdown(DESCRIPTION)
|
| 144 |
+
|
| 145 |
+
with gr.Row():
|
| 146 |
+
with gr.Column(scale=1):
|
| 147 |
+
image_input = gr.Image(type="pil", label="Upload an image")
|
| 148 |
+
question = gr.Textbox(
|
| 149 |
+
label="Ask a question about the image (optional)",
|
| 150 |
+
placeholder="e.g., Summarize, extract key numbers, explain this formula, write Python to do X...",
|
| 151 |
+
)
|
| 152 |
+
with gr.Accordion("Generation settings (advanced)", open=False):
|
| 153 |
+
max_new_tokens = gr.Slider(32, 1024, value=256, step=16, label="max_new_tokens")
|
| 154 |
+
temperature = gr.Slider(0.0, 1.5, value=0.2, step=0.05, label="temperature")
|
| 155 |
+
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="top_p")
|
| 156 |
+
|
| 157 |
+
run_btn = gr.Button("Run")
|
| 158 |
+
|
| 159 |
+
with gr.Column(scale=1):
|
| 160 |
+
ocr_out = gr.Textbox(label="Extracted Text (OCR)", lines=8)
|
| 161 |
+
llm_out = gr.Markdown(label="AI Answer", elem_id="ai-answer")
|
| 162 |
+
|
| 163 |
+
run_btn.click(
|
| 164 |
+
run_pipeline,
|
| 165 |
+
inputs=[image_input, question, max_new_tokens, temperature, top_p],
|
| 166 |
+
outputs=[ocr_out, llm_out],
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
gr.Examples(
|
| 170 |
+
label="Try these sample prompts (use with your own images)",
|
| 171 |
+
examples=[
|
| 172 |
+
["", "Summarize the document."],
|
| 173 |
+
["", "Extract all dates and amounts, then total the amounts."],
|
| 174 |
+
["", "Explain the equation and solve for x."],
|
| 175 |
+
["", "Convert the pseudocode in the image to Python."],
|
| 176 |
+
],
|
| 177 |
+
inputs=[image_input, question],
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
gr.Markdown(
|
| 181 |
+
"—\n**Licensing reminder:** facebook/MobileLLM-R1-950M is typically released for non-commercial research use. "
|
| 182 |
+
"Review the model card before production use."
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
return demo
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
if __name__ == "__main__":
|
| 189 |
+
demo = demo_ui()
|
| 190 |
+
demo.launch()
|