Improve the Gradio UI demo (thanks @blaisewf on GitHub)
Browse files
app.py
CHANGED
|
@@ -1,11 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
import json
|
| 6 |
import torch
|
| 7 |
import os
|
| 8 |
-
|
| 9 |
from meldataset import get_mel_spectrogram, MAX_WAV_VALUE
|
| 10 |
from bigvgan import BigVGAN
|
| 11 |
import librosa
|
|
@@ -14,22 +15,14 @@ from utils import plot_spectrogram
|
|
| 14 |
import PIL
|
| 15 |
|
| 16 |
if torch.cuda.is_available():
|
| 17 |
-
device = torch.device(
|
| 18 |
torch.backends.cudnn.benchmark = False
|
| 19 |
print(f"using GPU")
|
| 20 |
else:
|
| 21 |
-
device = torch.device(
|
| 22 |
print(f"using CPU")
|
| 23 |
|
| 24 |
|
| 25 |
-
def load_checkpoint(filepath):
|
| 26 |
-
assert os.path.isfile(filepath)
|
| 27 |
-
print("Loading '{}'".format(filepath))
|
| 28 |
-
checkpoint_dict = torch.load(filepath, map_location='cpu')
|
| 29 |
-
print("Complete.")
|
| 30 |
-
return checkpoint_dict
|
| 31 |
-
|
| 32 |
-
|
| 33 |
def inference_gradio(input, model_choice): # input is audio waveform in [T, channel]
|
| 34 |
sr, audio = input # unpack input to sampling rate and audio itself
|
| 35 |
audio = np.transpose(audio) # transpose to [channel, T] for librosa
|
|
@@ -49,17 +42,11 @@ def inference_gradio(input, model_choice): # input is audio waveform in [T, cha
|
|
| 49 |
|
| 50 |
spec_plot_gen = plot_spectrogram(spec_gen)
|
| 51 |
|
| 52 |
-
output_audio = (model.h.sampling_rate, output)
|
| 53 |
|
| 54 |
buffer = spec_plot_gen.canvas.buffer_rgba()
|
| 55 |
output_image = PIL.Image.frombuffer(
|
| 56 |
-
"RGBA",
|
| 57 |
-
spec_plot_gen.canvas.get_width_height(),
|
| 58 |
-
buffer,
|
| 59 |
-
"raw",
|
| 60 |
-
"RGBA",
|
| 61 |
-
0,
|
| 62 |
-
1
|
| 63 |
)
|
| 64 |
|
| 65 |
return output_audio, output_image
|
|
@@ -228,7 +215,7 @@ css = """
|
|
| 228 |
}
|
| 229 |
"""
|
| 230 |
|
| 231 |
-
|
| 232 |
|
| 233 |
LIST_MODEL_ID = [
|
| 234 |
"bigvgan_24khz_100band",
|
|
@@ -239,7 +226,7 @@ LIST_MODEL_ID = [
|
|
| 239 |
"bigvgan_v2_22khz_80band_fmax8k_256x",
|
| 240 |
"bigvgan_v2_24khz_100band_256x",
|
| 241 |
"bigvgan_v2_44khz_128band_256x",
|
| 242 |
-
"bigvgan_v2_44khz_128band_512x"
|
| 243 |
]
|
| 244 |
|
| 245 |
dict_model = {}
|
|
@@ -247,16 +234,16 @@ dict_config = {}
|
|
| 247 |
|
| 248 |
for model_name in LIST_MODEL_ID:
|
| 249 |
|
| 250 |
-
generator = BigVGAN.from_pretrained(
|
| 251 |
-
generator.eval()
|
| 252 |
generator.remove_weight_norm()
|
|
|
|
| 253 |
|
| 254 |
dict_model[model_name] = generator
|
| 255 |
dict_config[model_name] = generator.h
|
| 256 |
|
| 257 |
-
|
| 258 |
|
| 259 |
-
iface = gr.Blocks(css=css)
|
| 260 |
|
| 261 |
with iface:
|
| 262 |
gr.HTML(
|
|
@@ -267,10 +254,10 @@ with iface:
|
|
| 267 |
display: inline-flex;
|
| 268 |
align-items: center;
|
| 269 |
gap: 0.8rem;
|
| 270 |
-
font-size: 1.
|
| 271 |
"
|
| 272 |
>
|
| 273 |
-
<h1 style="font-weight:
|
| 274 |
BigVGAN: A Universal Neural Vocoder with Large-Scale Training
|
| 275 |
</h1>
|
| 276 |
</div>
|
|
@@ -299,14 +286,15 @@ with iface:
|
|
| 299 |
<div>
|
| 300 |
<h3>Model Overview</h3>
|
| 301 |
BigVGAN is a universal neural vocoder model that generates audio waveforms using mel spectrogram as inputs.
|
| 302 |
-
<center><img src="https://user-images.githubusercontent.com/15963413/218609148-881e39df-33af-4af9-ab95-1427c4ebf062.png" width="800" style="margin-top: 20px;"></center>
|
| 303 |
</div>
|
| 304 |
"""
|
| 305 |
)
|
|
|
|
| 306 |
|
| 307 |
-
with gr.Group():
|
| 308 |
model_choice = gr.Dropdown(
|
| 309 |
-
label="Select the model
|
|
|
|
| 310 |
value="bigvgan_v2_24khz_100band_256x",
|
| 311 |
choices=[m for m in LIST_MODEL_ID],
|
| 312 |
interactive=True,
|
|
@@ -316,143 +304,129 @@ with iface:
|
|
| 316 |
label="Input Audio", elem_id="input-audio", interactive=True
|
| 317 |
)
|
| 318 |
|
| 319 |
-
|
| 320 |
|
| 321 |
-
|
| 322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
|
| 331 |
-
|
|
|
|
| 332 |
[
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
[os.path.join(os.path.dirname(__file__), "examples/queen_24k.wav"), "bigvgan_v2_24khz_100band_256x"],
|
| 336 |
-
[os.path.join(os.path.dirname(__file__), "examples/dance_24k.wav"), "bigvgan_v2_24khz_100band_256x"],
|
| 337 |
-
[os.path.join(os.path.dirname(__file__), "examples/megalovania_24k.wav"), "bigvgan_v2_24khz_100band_256x"],
|
| 338 |
-
[os.path.join(os.path.dirname(__file__), "examples/hifitts_44k.wav"), "bigvgan_v2_44khz_128band_256x"],
|
| 339 |
-
[os.path.join(os.path.dirname(__file__), "examples/musdbhq_44k.wav"), "bigvgan_v2_44khz_128band_256x"],
|
| 340 |
-
[os.path.join(os.path.dirname(__file__), "examples/musiccaps1_44k.wav"), "bigvgan_v2_44khz_128band_256x"],
|
| 341 |
-
[os.path.join(os.path.dirname(__file__), "examples/musiccaps2_44k.wav"), "bigvgan_v2_44khz_128band_256x"],
|
| 342 |
],
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
<td>Large-scale Compilation</td>
|
| 412 |
-
<td>No</td>
|
| 413 |
-
</tr>
|
| 414 |
-
<tr>
|
| 415 |
-
<td><a href="https://huggingface.co/nvidia/bigvgan_24khz_100band">bigvgan_24khz_100band</a></td>
|
| 416 |
-
<td>24 kHz</td>
|
| 417 |
-
<td>100</td>
|
| 418 |
-
<td>12000</td>
|
| 419 |
-
<td>256</td>
|
| 420 |
-
<td>112M</td>
|
| 421 |
-
<td>LibriTTS</td>
|
| 422 |
-
<td>No</td>
|
| 423 |
-
</tr>
|
| 424 |
-
<tr>
|
| 425 |
-
<td><a href="https://huggingface.co/nvidia/bigvgan_base_24khz_100band">bigvgan_base_24khz_100band</a></td>
|
| 426 |
-
<td>24 kHz</td>
|
| 427 |
-
<td>100</td>
|
| 428 |
-
<td>12000</td>
|
| 429 |
-
<td>256</td>
|
| 430 |
-
<td>14M</td>
|
| 431 |
-
<td>LibriTTS</td>
|
| 432 |
-
<td>No</td>
|
| 433 |
-
</tr>
|
| 434 |
-
<tr>
|
| 435 |
-
<td><a href="https://huggingface.co/nvidia/bigvgan_22khz_80band">bigvgan_22khz_80band</a></td>
|
| 436 |
-
<td>22 kHz</td>
|
| 437 |
-
<td>80</td>
|
| 438 |
-
<td>8000</td>
|
| 439 |
-
<td>256</td>
|
| 440 |
-
<td>112M</td>
|
| 441 |
-
<td>LibriTTS + VCTK + LJSpeech</td>
|
| 442 |
-
<td>No</td>
|
| 443 |
-
</tr>
|
| 444 |
-
<tr>
|
| 445 |
-
<td><a href="https://huggingface.co/nvidia/bigvgan_base_22khz_80band">bigvgan_base_22khz_80band</a></td>
|
| 446 |
-
<td>22 kHz</td>
|
| 447 |
-
<td>80</td>
|
| 448 |
-
<td>8000</td>
|
| 449 |
-
<td>256</td>
|
| 450 |
-
<td>14M</td>
|
| 451 |
-
<td>LibriTTS + VCTK + LJSpeech</td>
|
| 452 |
-
<td>No</td>
|
| 453 |
-
</tr>
|
| 454 |
-
</tbody>
|
| 455 |
-
</table>
|
| 456 |
<p><b>NOTE: The v1 models are trained using speech audio datasets ONLY! (24kHz models: LibriTTS, 22kHz models: LibriTTS + VCTK + LJSpeech).</b></p>
|
| 457 |
</div>
|
| 458 |
"""
|
|
|
|
| 1 |
+
# Copyright (c) 2024 NVIDIA CORPORATION.
|
| 2 |
+
# Licensed under the MIT license.
|
| 3 |
+
|
| 4 |
import spaces
|
| 5 |
import gradio as gr
|
| 6 |
+
import pandas as pd
|
|
|
|
|
|
|
| 7 |
import torch
|
| 8 |
import os
|
| 9 |
+
|
| 10 |
from meldataset import get_mel_spectrogram, MAX_WAV_VALUE
|
| 11 |
from bigvgan import BigVGAN
|
| 12 |
import librosa
|
|
|
|
| 15 |
import PIL
|
| 16 |
|
| 17 |
if torch.cuda.is_available():
|
| 18 |
+
device = torch.device("cuda")
|
| 19 |
torch.backends.cudnn.benchmark = False
|
| 20 |
print(f"using GPU")
|
| 21 |
else:
|
| 22 |
+
device = torch.device("cpu")
|
| 23 |
print(f"using CPU")
|
| 24 |
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def inference_gradio(input, model_choice): # input is audio waveform in [T, channel]
|
| 27 |
sr, audio = input # unpack input to sampling rate and audio itself
|
| 28 |
audio = np.transpose(audio) # transpose to [channel, T] for librosa
|
|
|
|
| 42 |
|
| 43 |
spec_plot_gen = plot_spectrogram(spec_gen)
|
| 44 |
|
| 45 |
+
output_audio = (model.h.sampling_rate, output) # tuple for gr.Audio output
|
| 46 |
|
| 47 |
buffer = spec_plot_gen.canvas.buffer_rgba()
|
| 48 |
output_image = PIL.Image.frombuffer(
|
| 49 |
+
"RGBA", spec_plot_gen.canvas.get_width_height(), buffer, "raw", "RGBA", 0, 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
)
|
| 51 |
|
| 52 |
return output_audio, output_image
|
|
|
|
| 215 |
}
|
| 216 |
"""
|
| 217 |
|
| 218 |
+
# Script for loading the models
|
| 219 |
|
| 220 |
LIST_MODEL_ID = [
|
| 221 |
"bigvgan_24khz_100band",
|
|
|
|
| 226 |
"bigvgan_v2_22khz_80band_fmax8k_256x",
|
| 227 |
"bigvgan_v2_24khz_100band_256x",
|
| 228 |
"bigvgan_v2_44khz_128band_256x",
|
| 229 |
+
"bigvgan_v2_44khz_128band_512x",
|
| 230 |
]
|
| 231 |
|
| 232 |
dict_model = {}
|
|
|
|
| 234 |
|
| 235 |
for model_name in LIST_MODEL_ID:
|
| 236 |
|
| 237 |
+
generator = BigVGAN.from_pretrained("nvidia/" + model_name)
|
|
|
|
| 238 |
generator.remove_weight_norm()
|
| 239 |
+
generator.eval()
|
| 240 |
|
| 241 |
dict_model[model_name] = generator
|
| 242 |
dict_config[model_name] = generator.h
|
| 243 |
|
| 244 |
+
# Script for Gradio UI
|
| 245 |
|
| 246 |
+
iface = gr.Blocks(css=css, title="BigVGAN - Demo")
|
| 247 |
|
| 248 |
with iface:
|
| 249 |
gr.HTML(
|
|
|
|
| 254 |
display: inline-flex;
|
| 255 |
align-items: center;
|
| 256 |
gap: 0.8rem;
|
| 257 |
+
font-size: 1.5rem;
|
| 258 |
"
|
| 259 |
>
|
| 260 |
+
<h1 style="font-weight: 700; margin-bottom: 7px; line-height: normal;">
|
| 261 |
BigVGAN: A Universal Neural Vocoder with Large-Scale Training
|
| 262 |
</h1>
|
| 263 |
</div>
|
|
|
|
| 286 |
<div>
|
| 287 |
<h3>Model Overview</h3>
|
| 288 |
BigVGAN is a universal neural vocoder model that generates audio waveforms using mel spectrogram as inputs.
|
| 289 |
+
<center><img src="https://user-images.githubusercontent.com/15963413/218609148-881e39df-33af-4af9-ab95-1427c4ebf062.png" width="800" style="margin-top: 20px; border-radius: 15px;"></center>
|
| 290 |
</div>
|
| 291 |
"""
|
| 292 |
)
|
| 293 |
+
with gr.Accordion("Input"):
|
| 294 |
|
|
|
|
| 295 |
model_choice = gr.Dropdown(
|
| 296 |
+
label="Select the model to use",
|
| 297 |
+
info="The default model is bigvgan_v2_24khz_100band_256x",
|
| 298 |
value="bigvgan_v2_24khz_100band_256x",
|
| 299 |
choices=[m for m in LIST_MODEL_ID],
|
| 300 |
interactive=True,
|
|
|
|
| 304 |
label="Input Audio", elem_id="input-audio", interactive=True
|
| 305 |
)
|
| 306 |
|
| 307 |
+
button = gr.Button("Submit")
|
| 308 |
|
| 309 |
+
with gr.Accordion("Output"):
|
| 310 |
+
with gr.Column():
|
| 311 |
+
output_audio = gr.Audio(label="Output Audio", elem_id="output-audio")
|
| 312 |
+
output_image = gr.Image(
|
| 313 |
+
label="Output Mel Spectrogram", elem_id="output-image-gen"
|
| 314 |
+
)
|
| 315 |
|
| 316 |
+
button.click(
|
| 317 |
+
inference_gradio,
|
| 318 |
+
inputs=[audio_input, model_choice],
|
| 319 |
+
outputs=[output_audio, output_image],
|
| 320 |
+
concurrency_limit=10,
|
| 321 |
+
)
|
| 322 |
|
| 323 |
+
gr.Examples(
|
| 324 |
+
[
|
| 325 |
[
|
| 326 |
+
os.path.join(os.path.dirname(__file__), "examples/jensen_24k.wav"),
|
| 327 |
+
"bigvgan_v2_24khz_100band_256x",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
],
|
| 329 |
+
[
|
| 330 |
+
os.path.join(os.path.dirname(__file__), "examples/libritts_24k.wav"),
|
| 331 |
+
"bigvgan_v2_24khz_100band_256x",
|
| 332 |
+
],
|
| 333 |
+
[
|
| 334 |
+
os.path.join(os.path.dirname(__file__), "examples/queen_24k.wav"),
|
| 335 |
+
"bigvgan_v2_24khz_100band_256x",
|
| 336 |
+
],
|
| 337 |
+
[
|
| 338 |
+
os.path.join(os.path.dirname(__file__), "examples/dance_24k.wav"),
|
| 339 |
+
"bigvgan_v2_24khz_100band_256x",
|
| 340 |
+
],
|
| 341 |
+
[
|
| 342 |
+
os.path.join(os.path.dirname(__file__), "examples/megalovania_24k.wav"),
|
| 343 |
+
"bigvgan_v2_24khz_100band_256x",
|
| 344 |
+
],
|
| 345 |
+
[
|
| 346 |
+
os.path.join(os.path.dirname(__file__), "examples/hifitts_44k.wav"),
|
| 347 |
+
"bigvgan_v2_44khz_128band_256x",
|
| 348 |
+
],
|
| 349 |
+
[
|
| 350 |
+
os.path.join(os.path.dirname(__file__), "examples/musdbhq_44k.wav"),
|
| 351 |
+
"bigvgan_v2_44khz_128band_256x",
|
| 352 |
+
],
|
| 353 |
+
[
|
| 354 |
+
os.path.join(os.path.dirname(__file__), "examples/musiccaps1_44k.wav"),
|
| 355 |
+
"bigvgan_v2_44khz_128band_256x",
|
| 356 |
+
],
|
| 357 |
+
[
|
| 358 |
+
os.path.join(os.path.dirname(__file__), "examples/musiccaps2_44k.wav"),
|
| 359 |
+
"bigvgan_v2_44khz_128band_256x",
|
| 360 |
+
],
|
| 361 |
+
],
|
| 362 |
+
fn=inference_gradio,
|
| 363 |
+
inputs=[audio_input, model_choice],
|
| 364 |
+
outputs=[output_audio, output_image],
|
| 365 |
+
)
|
| 366 |
|
| 367 |
+
# Define the data for the table
|
| 368 |
+
data = {
|
| 369 |
+
"Model Name": [
|
| 370 |
+
"bigvgan_v2_44khz_128band_512x",
|
| 371 |
+
"bigvgan_v2_44khz_128band_256x",
|
| 372 |
+
"bigvgan_v2_24khz_100band_256x",
|
| 373 |
+
"bigvgan_v2_22khz_80band_256x",
|
| 374 |
+
"bigvgan_v2_22khz_80band_fmax8k_256x",
|
| 375 |
+
"bigvgan_24khz_100band",
|
| 376 |
+
"bigvgan_base_24khz_100band",
|
| 377 |
+
"bigvgan_22khz_80band",
|
| 378 |
+
"bigvgan_base_22khz_80band",
|
| 379 |
+
],
|
| 380 |
+
"Sampling Rate": [
|
| 381 |
+
"44 kHz",
|
| 382 |
+
"44 kHz",
|
| 383 |
+
"24 kHz",
|
| 384 |
+
"22 kHz",
|
| 385 |
+
"22 kHz",
|
| 386 |
+
"24 kHz",
|
| 387 |
+
"24 kHz",
|
| 388 |
+
"22 kHz",
|
| 389 |
+
"22 kHz",
|
| 390 |
+
],
|
| 391 |
+
"Mel band": [128, 128, 100, 80, 80, 100, 100, 80, 80],
|
| 392 |
+
"fmax": [22050, 22050, 12000, 11025, 8000, 12000, 12000, 8000, 8000],
|
| 393 |
+
"Upsampling Ratio": [512, 256, 256, 256, 256, 256, 256, 256, 256],
|
| 394 |
+
"Parameters": [
|
| 395 |
+
"122M",
|
| 396 |
+
"112M",
|
| 397 |
+
"112M",
|
| 398 |
+
"112M",
|
| 399 |
+
"112M",
|
| 400 |
+
"112M",
|
| 401 |
+
"14M",
|
| 402 |
+
"112M",
|
| 403 |
+
"14M",
|
| 404 |
+
],
|
| 405 |
+
"Dataset": [
|
| 406 |
+
"Large-scale Compilation",
|
| 407 |
+
"Large-scale Compilation",
|
| 408 |
+
"Large-scale Compilation",
|
| 409 |
+
"Large-scale Compilation",
|
| 410 |
+
"Large-scale Compilation",
|
| 411 |
+
"LibriTTS",
|
| 412 |
+
"LibriTTS",
|
| 413 |
+
"LibriTTS + VCTK + LJSpeech",
|
| 414 |
+
"LibriTTS + VCTK + LJSpeech",
|
| 415 |
+
],
|
| 416 |
+
"Fine-Tuned": ["No", "No", "No", "No", "No", "No", "No", "No", "No"],
|
| 417 |
+
}
|
| 418 |
+
|
| 419 |
+
base_url = "https://huggingface.co/nvidia/"
|
| 420 |
+
|
| 421 |
+
df = pd.DataFrame(data)
|
| 422 |
+
df["Model Name"] = df["Model Name"].apply(
|
| 423 |
+
lambda x: f'<a href="{base_url}{x}">{x}</a>'
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
html_table = gr.HTML(
|
| 427 |
+
f"""
|
| 428 |
+
<div style="text-align: center;">
|
| 429 |
+
{df.to_html(index=False, escape=False, classes='border="1" cellspacing="0" cellpadding="5" style="margin-left: auto; margin-right: auto;')}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
<p><b>NOTE: The v1 models are trained using speech audio datasets ONLY! (24kHz models: LibriTTS, 22kHz models: LibriTTS + VCTK + LJSpeech).</b></p>
|
| 431 |
</div>
|
| 432 |
"""
|