Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| # SPDX-License-Identifier: Apache-2.0 | |
| from PIL import Image | |
| from io import BytesIO | |
| import base64 | |
| import numpy as np | |
| import os | |
| import torch | |
| from transformers import StoppingCriteria | |
| from .constants import IMAGE_TOKEN_INDEX | |
| import tempfile | |
| from io import BytesIO | |
| def get_frame_from_vcap(vidcap, num_frames=10, fps=None, frame_count=None): | |
| import cv2 | |
| if fps == None or frame_count == None: | |
| # if one of fps or frame_count is None, still recompute | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| if fps == 0 or frame_count == 0: | |
| print("Video file not found. return empty images.") | |
| return [ | |
| Image.new("RGB", (720, 720)), | |
| ] * num_frames | |
| duration = frame_count / fps | |
| frame_interval = frame_count // num_frames | |
| if frame_interval == 0 and frame_count <= 1: | |
| print("frame_interval is equal to 0. return empty image.") | |
| return [ | |
| Image.new("RGB", (720, 720)), | |
| ] * num_frames | |
| # print("duration:", duration, "frames:", frame_count, "intervals:", frame_interval) | |
| images = [] | |
| count = 0 | |
| success = True | |
| frame_indices = np.linspace(0, frame_count - 2, num_frames, dtype=int) | |
| while success: | |
| # print("frame_count:", frame_count, "count:", count, "num_frames:", num_frames, "frame_interval:", frame_interval) | |
| if frame_count >= num_frames: | |
| success, frame = vidcap.read() | |
| if count in frame_indices: | |
| img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| im_pil = Image.fromarray(img) | |
| images.append(im_pil) | |
| if len(images) >= num_frames: | |
| return images | |
| count += 1 | |
| else: | |
| # Left padding frames if the video is not long enough | |
| success, frame = vidcap.read() | |
| if success: | |
| img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| im_pil = Image.fromarray(img) | |
| images.append(im_pil) | |
| count += 1 | |
| elif count >= 1: | |
| width, height = images[-1].size | |
| images = [Image.new("RGB", (width, height))] * \ | |
| (num_frames - len(images)) + images | |
| print("padding frames:", (num_frames - len(images))) | |
| return images | |
| else: | |
| break | |
| raise ValueError( | |
| "Did not find enough frames in the video. return empty image.") | |
| def opencv_extract_frames(vpath_or_bytesio, frames=6, fps=None, frame_count=None): | |
| """ | |
| Extract frames from a video using OpenCV. | |
| Args: | |
| vpath_or_bytesio (str or BytesIO): Path to the video file or BytesIO object containing the video. | |
| frames (int): Number of frames to extract from the video. | |
| Returns: | |
| list: List of PIL Images extracted from the video. | |
| Raises: | |
| NotImplementedError: If the type of `vpath_or_bytesio` is not supported. | |
| """ | |
| import cv2 | |
| if isinstance(vpath_or_bytesio, str): | |
| vidcap = cv2.VideoCapture(vpath_or_bytesio) | |
| return get_frame_from_vcap(vidcap, frames, fps=fps, frame_count=frame_count) | |
| elif isinstance(vpath_or_bytesio, (BytesIO,)): | |
| # assuming mp4 | |
| with tempfile.NamedTemporaryFile(delete=True, suffix=".mp4") as temp_video: | |
| temp_video.write(vpath_or_bytesio.read()) | |
| temp_video_name = temp_video.name | |
| vidcap = cv2.VideoCapture(temp_video_name) | |
| return get_frame_from_vcap(vidcap, frames, fps=fps, frame_count=frame_count) | |
| else: | |
| raise NotImplementedError(type(vpath_or_bytesio)) | |
| def load_image_from_base64(image): | |
| return Image.open(BytesIO(base64.b64decode(image))) | |
| def expand2square(pil_img, background_color): | |
| """ | |
| Expand the given PIL image to a square shape by adding padding. | |
| Parameters: | |
| - pil_img: The PIL image to be expanded. | |
| - background_color: The color of the padding to be added. | |
| Returns: | |
| - The expanded PIL image. | |
| If the image is already square, it is returned as is. | |
| If the image is wider than it is tall, padding is added to the top and bottom. | |
| If the image is taller than it is wide, padding is added to the left and right. | |
| """ | |
| width, height = pil_img.size | |
| if pil_img.mode == 'L': | |
| background_color = background_color[0] | |
| if width == height: | |
| return pil_img | |
| elif width > height: | |
| result = Image.new(pil_img.mode, (width, width), background_color) | |
| result.paste(pil_img, (0, (width - height) // 2)) | |
| return result | |
| else: | |
| result = Image.new(pil_img.mode, (height, height), background_color) | |
| result.paste(pil_img, ((height - width) // 2, 0)) | |
| return result | |
| def process_image(image_file, data_args, image_folder, pil_preprocess_fn=None): | |
| processor = data_args.image_processor | |
| if isinstance(image_file, str): | |
| if image_folder is not None: | |
| image = Image.open(os.path.join( | |
| image_folder, image_file)).convert("RGB") | |
| else: | |
| image = Image.open(image_file).convert("RGB") | |
| else: | |
| # image is stored in bytearray | |
| image = image_file.convert("RGB") | |
| info = None | |
| if pil_preprocess_fn is not None: | |
| image = pil_preprocess_fn(image) | |
| if isinstance(image, tuple): | |
| image, info = image | |
| if data_args.image_aspect_ratio == "resize": | |
| if hasattr(data_args.image_processor, "crop_size"): | |
| # CLIP vision tower | |
| crop_size = data_args.image_processor.crop_size | |
| else: | |
| # SIGLIP vision tower | |
| assert hasattr(data_args.image_processor, "size") | |
| crop_size = data_args.image_processor.size | |
| image = image.resize((crop_size["height"], crop_size["width"])) | |
| if data_args.image_aspect_ratio == "pad": | |
| def expand2square(pil_img, background_color): | |
| width, height = pil_img.size | |
| if width == height: | |
| return pil_img | |
| elif width > height: | |
| result = Image.new( | |
| pil_img.mode, (width, width), background_color) | |
| result.paste(pil_img, (0, (width - height) // 2)) | |
| return result | |
| else: | |
| result = Image.new( | |
| pil_img.mode, (height, height), background_color) | |
| result.paste(pil_img, ((height - width) // 2, 0)) | |
| return result | |
| image = expand2square(image, tuple(int(x * 255) | |
| for x in processor.image_mean)) | |
| image = processor.preprocess(image, return_tensors="pt")[ | |
| "pixel_values"][0] | |
| else: | |
| # Using default behavior of the vision encoder | |
| # For CLIP, default is central crop | |
| # For Radio, default is central crop | |
| # For Siglip, default is resize | |
| # For InternVIT, default is resize | |
| image = processor.preprocess(image, return_tensors="pt")[ | |
| "pixel_values"][0] | |
| if info is not None: | |
| return image, info | |
| return image | |
| def process_images(images, image_processor, model_cfg): | |
| model_cfg.image_processor = image_processor | |
| new_images = [process_image(image, model_cfg, None) for image in images] | |
| if all(x.shape == new_images[0].shape for x in new_images): | |
| new_images = torch.stack(new_images, dim=0) | |
| return new_images | |
| # Note that newer VILA codebase adds an lstrip option that defaults to False, and the functionality is the same by default | |
| def tokenizer_image_token( | |
| prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None | |
| ): | |
| prompt_chunks = [ | |
| tokenizer(chunk).input_ids for chunk in prompt.split("<image>")] | |
| def insert_separator(X, sep): | |
| return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1] | |
| input_ids = [] | |
| offset = 0 | |
| if ( | |
| len(prompt_chunks) > 0 | |
| and len(prompt_chunks[0]) > 0 | |
| and prompt_chunks[0][0] == tokenizer.bos_token_id | |
| ): | |
| offset = 1 | |
| input_ids.append(prompt_chunks[0][0]) | |
| for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): | |
| input_ids.extend(x[offset:]) | |
| if return_tensors is not None: | |
| if return_tensors == "pt": | |
| return torch.tensor(input_ids, dtype=torch.long) | |
| raise ValueError(f"Unsupported tensor type: {return_tensors}") | |
| return input_ids | |
| def is_gemma_tokenizer(tokenizer): | |
| return "gemma" in tokenizer.__class__.__name__.lower() | |
| def get_model_name_from_path(model_path): | |
| model_path = model_path.strip("/") | |
| model_paths = model_path.split("/") | |
| if model_paths[-1].startswith("checkpoint-"): | |
| return model_paths[-2] + "_" + model_paths[-1] | |
| else: | |
| return model_paths[-1] | |
| class KeywordsStoppingCriteria(StoppingCriteria): | |
| def __init__(self, keywords, tokenizer, input_ids): | |
| self.keywords = keywords | |
| self.keyword_ids = [] | |
| self.max_keyword_len = 0 | |
| for keyword in keywords: | |
| cur_keyword_ids = tokenizer(keyword).input_ids | |
| if ( | |
| len(cur_keyword_ids) > 1 | |
| and cur_keyword_ids[0] == tokenizer.bos_token_id | |
| ): | |
| cur_keyword_ids = cur_keyword_ids[1:] | |
| if len(cur_keyword_ids) > self.max_keyword_len: | |
| self.max_keyword_len = len(cur_keyword_ids) | |
| self.keyword_ids.append(torch.tensor(cur_keyword_ids)) | |
| self.tokenizer = tokenizer | |
| self.start_len = input_ids.shape[1] | |
| def call_for_batch( | |
| self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs | |
| ) -> bool: | |
| offset = min(output_ids.shape[1] - | |
| self.start_len, self.max_keyword_len) | |
| self.keyword_ids = [ | |
| keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids | |
| ] | |
| for keyword_id in self.keyword_ids: | |
| if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all(): | |
| return True | |
| outputs = self.tokenizer.batch_decode( | |
| output_ids[:, -offset:], skip_special_tokens=True | |
| )[0] | |
| for keyword in self.keywords: | |
| if keyword in outputs: | |
| return True | |
| return False | |
| def __call__( | |
| self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs | |
| ) -> bool: | |
| outputs = [] | |
| for i in range(output_ids.shape[0]): | |
| outputs.append(self.call_for_batch( | |
| output_ids[i].unsqueeze(0), scores)) | |
| return all(outputs) | |