Spaces:
Running
on
Zero
Running
on
Zero
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| import torch.nn as nn | |
| import os | |
| import warnings | |
| from typing import Optional, Union, List, Tuple | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModel, | |
| AutoModelForCausalLM, | |
| AutoConfig, | |
| BitsAndBytesConfig, | |
| PretrainedConfig, | |
| PreTrainedModel, | |
| LlamaConfig, | |
| LlamaModel, | |
| ) | |
| from transformers.modeling_outputs import CausalLMOutputWithPast | |
| from transformers import PretrainedConfig | |
| from .llava_arch import LlavaMetaModel, LlavaMetaForCausalLM | |
| from .language_model.llava_llama import LlavaLlamaConfig | |
| # TODO: we may move LlavaConfig to configuration_llava.py | |
| # from model.configuration_llava import LlavaConfig | |
| class LlavaLlamaModel(LlavaMetaModel, LlavaMetaForCausalLM, PreTrainedModel): | |
| config_class = LlavaLlamaConfig | |
| main_input_name = "input_embeds" | |
| supports_gradient_checkpointing = True | |
| def __init__(self, config: LlavaLlamaConfig = None, *args, **kwargs) -> None: | |
| super().__init__(config) | |
| self.init_vlm(config=config, *args, **kwargs) | |
| def from_pretrained( | |
| cls, | |
| pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], | |
| *model_args, | |
| config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, | |
| cache_dir: Optional[Union[str, os.PathLike]] = None, | |
| ignore_mismatched_sizes: bool = False, | |
| force_download: bool = False, | |
| local_files_only: bool = False, | |
| token: Optional[Union[str, bool]] = None, | |
| revision: str = "main", | |
| use_safetensors: bool = None, | |
| **kwargs, | |
| ): | |
| if hasattr(cls, "load_pretrained"): | |
| return cls.load_pretrained(pretrained_model_name_or_path, | |
| *model_args, config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes, force_download=force_download, local_files_only=local_files_only, token=token, | |
| revision=revision, use_safetensors=use_safetensors, **kwargs | |
| ) | |
| return super(LlavaLlamaModel).from_pretrained(pretrained_model_name_or_path, | |
| *model_args, config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes, force_download=force_download, local_files_only=local_files_only, token=token, | |
| revision=revision, use_safetensors=use_safetensors, **kwargs) | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| images: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, CausalLMOutputWithPast]: | |
| self.freezed_module_patch() | |
| if inputs_embeds is None: | |
| ( | |
| input_ids, | |
| position_ids, | |
| attention_mask, | |
| past_key_values, | |
| inputs_embeds, | |
| labels, | |
| ) = self.prepare_inputs_labels_for_multimodal( | |
| input_ids, position_ids, attention_mask, past_key_values, labels, images | |
| ) | |
| # Note (kentang-mit@): we have a unit test for this function. | |
| if self.training: | |
| ( | |
| _, | |
| new_position_ids, | |
| new_attention_mask, | |
| _, | |
| new_inputs_embeds, | |
| new_labels, | |
| sorted_seqlens_in_batch, | |
| ) = self.repack_multimodal_data( | |
| input_ids, | |
| position_ids, | |
| attention_mask, | |
| past_key_values, | |
| inputs_embeds, | |
| labels, | |
| ) | |
| new_input_ids = None | |
| past_key_values = None | |
| else: | |
| new_attention_mask = attention_mask | |
| new_position_ids = position_ids | |
| new_inputs_embeds = inputs_embeds | |
| new_labels = labels | |
| sorted_seqlens_in_batch = attention_mask.sum(-1).int() | |
| new_input_ids = input_ids | |
| outputs = self.llm.forward( | |
| input_ids=new_input_ids, | |
| attention_mask=new_attention_mask, | |
| position_ids=new_position_ids, | |
| past_key_values=past_key_values, | |
| inputs_embeds=new_inputs_embeds, | |
| labels=new_labels, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| seqlens_in_batch=sorted_seqlens_in_batch, | |
| ) | |
| return outputs | |
| def generate( | |
| self, | |
| input_ids: Optional[torch.FloatTensor] = None, | |
| images: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| **generation_kwargs, | |
| ): | |
| if images is not None: | |
| ( | |
| _, | |
| _, | |
| attention_mask, | |
| _, | |
| inputs_embeds, | |
| _, | |
| ) = self.prepare_inputs_labels_for_multimodal( | |
| input_ids, None, attention_mask, None, None, images | |
| ) | |
| else: | |
| inputs_embeds = self.get_input_embeddings()(input_ids) | |
| inputs_embeds = inputs_embeds.to(self.dtype) | |
| outputs = self.llm.generate( | |
| inputs_embeds=inputs_embeds, | |
| attention_mask=attention_mask, | |
| **generation_kwargs | |
| ) | |
| return outputs | |
| def disable_torch_init(): | |
| """ | |
| Disable the redundant torch default initialization to accelerate model creation. | |
| """ | |
| import torch | |
| setattr(torch.nn.Linear, "reset_parameters", lambda self: None) | |
| setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) | |
| def load_pretrained_model( | |
| model_path, | |
| model_name, | |
| model_base=None, | |
| load_8bit=False, | |
| load_4bit=False, | |
| device_map="auto", | |
| device="cuda", | |
| **kwargs, | |
| ): | |
| kwargs = {"device_map": device_map, **kwargs} | |
| if device != "cuda": | |
| kwargs["device_map"] = {"": device} | |
| if load_8bit: | |
| kwargs["load_in_8bit"] = True | |
| elif load_4bit: | |
| kwargs["load_in_4bit"] = True | |
| kwargs["quantization_config"] = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_compute_dtype=torch.float16, | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_quant_type="nf4", | |
| ) | |
| else: | |
| kwargs["torch_dtype"] = torch.float16 | |
| config = AutoConfig.from_pretrained(model_path) | |
| config.resume_path = model_path | |
| prepare_config_for_eval(config, kwargs) | |
| model = LlavaLlamaModel( | |
| config=config, | |
| low_cpu_mem_usage=True, | |
| **kwargs | |
| ) | |
| tokenizer = model.tokenizer | |
| model.eval() | |
| # mm_use_im_start_end = getattr( | |
| # model.config, "mm_use_im_start_end", False) | |
| # mm_use_im_patch_token = getattr( | |
| # model.config, "mm_use_im_patch_token", True) | |
| # if mm_use_im_patch_token: | |
| # tokenizer.add_tokens( | |
| # [DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
| # if mm_use_im_start_end: | |
| # tokenizer.add_tokens( | |
| # [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True | |
| # ) | |
| model.resize_token_embeddings(len(tokenizer)) | |
| vision_tower = model.get_vision_tower() | |
| vision_tower.to(device=device, dtype=torch.float16) | |
| mm_projector = model.get_mm_projector() | |
| mm_projector.to(device=device, dtype=torch.float16) | |
| context_provider = model.get_context_provider() | |
| if context_provider is not None: | |
| context_provider.to(device=device, dtype=torch.float16) | |
| image_processor = vision_tower.image_processor | |
| if hasattr(model.llm.config, "max_sequence_length"): | |
| context_len = model.config.max_sequence_length | |
| else: | |
| context_len = 2048 | |
| return tokenizer, model, image_processor, context_len | |
| def parse_model_name_or_path(config: PretrainedConfig, model_name="llm", suffix="_cfg"): | |
| target_model = f"{model_name}{suffix}" | |
| target_cfg = getattr(config, target_model, None) | |
| if isinstance(target_cfg, str): | |
| return target_cfg | |
| elif isinstance(target_cfg, dict): | |
| return target_cfg["architectures"][0] | |
| else: | |
| raise ValueError(f"Invalid {target_model} configuration!") | |
| def prepare_config_for_eval(config: PretrainedConfig, kwargs: dict): | |
| try: | |
| # compatible with deprecated config convention | |
| if getattr(config, "vision_tower_cfg", None) is None: | |
| config.vision_tower_cfg = config.mm_vision_tower | |
| except AttributeError: | |
| raise ValueError( | |
| f"Invalid configuration! Cannot find vision_tower in config:\n{config}") | |
| config.model_dtype = kwargs.pop("torch_dtype").__str__() | |
| # siglip does not support device_map = "auto" | |
| vision_tower_name = parse_model_name_or_path(config, "vision_tower") | |
| if "siglip" in vision_tower_name.lower(): | |
| kwargs["device_map"] = "cuda" | |
| AutoConfig.register("llava_llama", LlavaLlamaConfig) | |
| AutoModel.register(LlavaLlamaConfig, LlavaLlamaModel) | |