File size: 6,053 Bytes
945806b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9ddefd
945806b
 
 
 
 
 
 
 
38da510
 
 
 
 
 
 
 
 
 
945806b
 
38da510
 
 
 
 
945806b
e9ddefd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
945806b
e9ddefd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
945806b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer
from threading import Thread
import torch
import spaces
import os

pretrained_model_name_or_path=os.environ.get("MODEL", "nvidia/NV-Reason-CXR-3B")

auth_token = os.environ.get("HF_TOKEN") or True
DEFAULT_PROMPT = "Find abnormalities and support devices."

model = AutoModelForImageTextToText.from_pretrained(
    pretrained_model_name_or_path=pretrained_model_name_or_path,
    dtype=torch.bfloat16,
    token=auth_token
).eval().to("cuda")


processor = AutoProcessor.from_pretrained(pretrained_model_name_or_path,
    use_fast=True,
  )


@spaces.GPU
def model_inference(
    text, history, image
): 

    print(f"text: {text}")
    print(f"history: {history}")

    if len(text) == 0:
        raise gr.Error("Please input a query.", duration=3, print_exception=False)

    if image is None:
        raise gr.Error("Please provide an image.", duration=3, print_exception=False)

    # print(f"image0: {image} size: {image.size}")

    messages=[]
    if len(history) > 0:
        valid_index = None
        for i in range(len(history)):
            h = history[i]
            if len(h.get("content").strip()) > 0:
                if valid_index is None and h['role'] == 'assistant':
                    valid_index = i-1 
                messages.append({"role": h['role'], "content": [{"type": "text", "text": h['content']}] })

        if valid_index is None:
            messages = []
        if len(messages) > 0 and valid_index > 0:
            messages = messages[valid_index:] #remove previous messages (without image)

    # current prompt
    messages.append({"role": "user","content": [{"type": "text", "text": text}]})
    messages[0]['content'].insert(0, {"type": "image"})
    print(f"messages: {messages}")


    prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=[image], return_tensors="pt")
    inputs = inputs.to('cuda')


    # Generate
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_args = dict(inputs, streamer=streamer, max_new_tokens=4096)

    with torch.inference_mode():
        thread = Thread(target=model.generate, kwargs=generation_args)
        thread.start()

        yield "..."
        buffer = ""
        
        
        for new_text in streamer:
            buffer += new_text
            yield buffer


with gr.Blocks() as demo:

    gr.HTML('<h1 style="text-align:center; margin: 0.2em 0; color: green;">NV-Reason-CXR-3B Demo. Check out the model card details <a href="https://huggingface.co/nvidia/NV-Reason-CXR-3B" target="_blank">here</a>.</h1>')
    send_btn = gr.Button("Send", variant="primary", render=False)
    textbox = gr.Textbox(show_label=False, placeholder="Enter your text here and press ENTER", render=False, submit_btn="Send")

    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(type="pil", visible=True, sources="upload", show_label=False)
            clear_btn = gr.Button("Clear", variant="secondary")

            with gr.Accordion("Examples", open=True): 

                ex =gr.Examples(
                    examples=[
                        ["example_images/35.jpg", "Examine the chest X-ray."],
                        ["example_images/363.jpg", "Provide a comprehensive image analysis, and list all abnormalities."],
                        ["example_images/4747.jpg", "Find abnormalities and support devices."],
                        ["example_images/87.jpg", "Find abnormalities and support devices."],
                        ["example_images/6218.jpg", "Find abnormalities and support devices."],
                        ["example_images/6447.jpg", "Find abnormalities and support devices."],


                    ],
                    inputs=[image_input, textbox],
                    label=None,
                )
                ex.dataset.show_label = False

        with gr.Column(scale=2):
            chat_interface = gr.ChatInterface(fn=model_inference,
                type="messages",
                chatbot=gr.Chatbot(type="messages", label="AI", render_markdown=True, sanitize_html=False, allow_tags=True, height='35vw', container=False, show_share_button=False),
                textbox=textbox,
                additional_inputs=image_input,
                multimodal=False,
                fill_height=False,
                show_api=False,
                )
            gr.HTML('<span style="color:lightgray">Start with a full prompt: Find abnormalities and support devices.<br>\
                Follow up with additial questions, such as Provide differentials or Write a structured report.<br>')



        # Clear chat history when an example is selected (keep example-populated inputs intact)
        ex.load_input_event.then(
                lambda: ([], [], [], None),
                None,
                [chat_interface.chatbot, chat_interface.chatbot_state, chat_interface.chatbot_value, chat_interface.saved_input],
                queue=False,
                show_api=False,
            )
               
        # Clear chat history when a new image is uploaded via the image input
        image_input.upload(
                lambda: ([], [], [], None, DEFAULT_PROMPT),
                None,
                [chat_interface.chatbot, chat_interface.chatbot_state, chat_interface.chatbot_value, chat_interface.saved_input, textbox],
                queue=False,
                show_api=False,
            )

        # Clear everything on Clear button click
        clear_btn.click(
                lambda: ([], [], [], None, "", None),
                None,
                [chat_interface.chatbot, chat_interface.chatbot_state, chat_interface.chatbot_value, chat_interface.saved_input, textbox, image_input],
                queue=False,
                show_api=False,
            )



demo.queue(max_size=10)
demo.launch(debug=False, server_name="0.0.0.0")