Update app.py
Browse files
app.py
CHANGED
|
@@ -7,10 +7,24 @@ from transformers import pipeline
|
|
| 7 |
import warnings
|
| 8 |
from io import BytesIO
|
| 9 |
import importlib.util
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Suppress warnings
|
| 12 |
warnings.filterwarnings("ignore")
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# Global variables for models
|
| 15 |
detector = None
|
| 16 |
sam_predictor = None
|
|
@@ -248,34 +262,38 @@ def visualize_detections(image, detections, show_labels=True):
|
|
| 248 |
fig = plt.figure(figsize=(12, 8))
|
| 249 |
plt.imshow(image_np)
|
| 250 |
|
| 251 |
-
#
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
#
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
|
|
|
|
|
|
| 278 |
|
|
|
|
|
|
|
| 279 |
plt.axis('off')
|
| 280 |
plt.tight_layout()
|
| 281 |
|
|
@@ -288,6 +306,99 @@ def visualize_detections(image, detections, show_labels=True):
|
|
| 288 |
result_image = Image.open(buf)
|
| 289 |
return result_image
|
| 290 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
def is_count_query(text):
|
| 292 |
"""Check if the query is asking for counting."""
|
| 293 |
count_keywords = ["how many", "count", "number of", "total"]
|
|
@@ -299,61 +410,54 @@ def detection_pipeline(query_text, image, threshold, use_sam):
|
|
| 299 |
return None, "β οΈ Please upload an image first!"
|
| 300 |
|
| 301 |
try:
|
| 302 |
-
#
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
# Simple keyword extraction
|
| 306 |
-
if "people" in query_lower or "person" in query_lower:
|
| 307 |
-
search_terms = "person"
|
| 308 |
-
elif "car" in query_lower or "vehicle" in query_lower:
|
| 309 |
-
search_terms = "car"
|
| 310 |
-
elif "apple" in query_lower:
|
| 311 |
-
search_terms = "apple"
|
| 312 |
-
elif "bottle" in query_lower:
|
| 313 |
-
search_terms = "bottle"
|
| 314 |
-
elif "phone" in query_lower:
|
| 315 |
-
search_terms = "phone"
|
| 316 |
-
elif "dog" in query_lower:
|
| 317 |
-
search_terms = "dog"
|
| 318 |
-
elif "cat" in query_lower:
|
| 319 |
-
search_terms = "cat"
|
| 320 |
-
else:
|
| 321 |
-
# Extract last word as potential object
|
| 322 |
-
words = query_text.strip().split()
|
| 323 |
-
search_terms = words[-1] if words else "object"
|
| 324 |
|
| 325 |
print(f"Processing query: '{query_text}' -> searching for: '{search_terms}'")
|
| 326 |
|
| 327 |
# Run object detection
|
| 328 |
detections, processed_image = detect_objects_owlv2(search_terms, image, threshold)
|
| 329 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
# Generate masks if requested
|
| 331 |
if use_sam and detections:
|
|
|
|
| 332 |
detections = generate_masks_sam2(detections, processed_image)
|
| 333 |
|
| 334 |
# Create visualization using your proven functions
|
| 335 |
-
|
|
|
|
| 336 |
result_image = visualize_detections_with_masks(
|
| 337 |
processed_image,
|
| 338 |
detections,
|
| 339 |
show_labels=True,
|
| 340 |
show_boxes=True
|
| 341 |
)
|
|
|
|
| 342 |
else:
|
| 343 |
result_image = visualize_detections(
|
| 344 |
processed_image,
|
| 345 |
detections,
|
| 346 |
show_labels=True
|
| 347 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
|
| 349 |
# Generate summary
|
| 350 |
count = len(detections)
|
| 351 |
|
| 352 |
summary_parts = []
|
| 353 |
-
summary_parts.append(f"
|
| 354 |
-
summary_parts.append(f"
|
| 355 |
summary_parts.append(f"βοΈ **Threshold**: {threshold}")
|
| 356 |
-
summary_parts.append(f"
|
| 357 |
|
| 358 |
if count > 0:
|
| 359 |
if is_count_query(query_text):
|
|
|
|
| 7 |
import warnings
|
| 8 |
from io import BytesIO
|
| 9 |
import importlib.util
|
| 10 |
+
import os
|
| 11 |
+
import openai
|
| 12 |
|
| 13 |
# Suppress warnings
|
| 14 |
warnings.filterwarnings("ignore")
|
| 15 |
|
| 16 |
+
# Set up OpenAI API key
|
| 17 |
+
api_key = os.getenv('OPENAI_API_KEY')
|
| 18 |
+
if not api_key:
|
| 19 |
+
print("No OpenAI API key found - will use simple keyword extraction")
|
| 20 |
+
elif not api_key.startswith("sk-proj-") and not api_key.startswith("sk-"):
|
| 21 |
+
print("API key found but doesn't look correct")
|
| 22 |
+
elif api_key.strip() != api_key:
|
| 23 |
+
print("API key has leading or trailing whitespace - please fix it.")
|
| 24 |
+
else:
|
| 25 |
+
print("OpenAI API key found and looks good!")
|
| 26 |
+
openai.api_key = api_key
|
| 27 |
+
|
| 28 |
# Global variables for models
|
| 29 |
detector = None
|
| 30 |
sam_predictor = None
|
|
|
|
| 262 |
fig = plt.figure(figsize=(12, 8))
|
| 263 |
plt.imshow(image_np)
|
| 264 |
|
| 265 |
+
# If we have detections, draw them
|
| 266 |
+
if detections:
|
| 267 |
+
# Define colors for different instances
|
| 268 |
+
colors = plt.cm.tab10(np.linspace(0, 1, 10))
|
| 269 |
+
|
| 270 |
+
# Plot each detection
|
| 271 |
+
for i, detection in enumerate(detections):
|
| 272 |
+
# Get bbox, label, and score
|
| 273 |
+
bbox = detection['bbox']
|
| 274 |
+
label = detection['label']
|
| 275 |
+
score = detection['score']
|
| 276 |
+
|
| 277 |
+
# Convert normalized bbox to pixel coordinates
|
| 278 |
+
x1, y1, x2, y2 = bbox
|
| 279 |
+
x1_px, y1_px = int(x1 * width), int(y1 * height)
|
| 280 |
+
x2_px, y2_px = int(x2 * width), int(y2 * height)
|
| 281 |
+
|
| 282 |
+
# Color for this instance
|
| 283 |
+
color = colors[i % len(colors)]
|
| 284 |
+
|
| 285 |
+
# Draw bounding box
|
| 286 |
+
rect = plt.Rectangle((x1_px, y1_px), x2_px - x1_px, y2_px - y1_px,
|
| 287 |
+
fill=False, edgecolor=color, linewidth=2)
|
| 288 |
+
plt.gca().add_patch(rect)
|
| 289 |
+
|
| 290 |
+
# Add label and score if requested
|
| 291 |
+
if show_labels:
|
| 292 |
+
plt.text(x1_px, y1_px - 5, f"{label}: {score:.2f}",
|
| 293 |
+
color='white', bbox=dict(facecolor=color, alpha=0.8), fontsize=10)
|
| 294 |
|
| 295 |
+
# Set title
|
| 296 |
+
plt.title(f'Object Detection Results ({len(detections)} objects found)', fontsize=14, pad=20)
|
| 297 |
plt.axis('off')
|
| 298 |
plt.tight_layout()
|
| 299 |
|
|
|
|
| 306 |
result_image = Image.open(buf)
|
| 307 |
return result_image
|
| 308 |
|
| 309 |
+
def get_optimized_prompt(query_text):
|
| 310 |
+
"""
|
| 311 |
+
Use OpenAI to convert natural language query into optimal detection prompt.
|
| 312 |
+
Falls back to simple extraction if OpenAI is not available.
|
| 313 |
+
"""
|
| 314 |
+
if not query_text.strip():
|
| 315 |
+
return "object"
|
| 316 |
+
|
| 317 |
+
# Try OpenAI first if API key is available
|
| 318 |
+
if hasattr(openai, 'api_key') and openai.api_key:
|
| 319 |
+
try:
|
| 320 |
+
response = openai.chat.completions.create(
|
| 321 |
+
model="gpt-3.5-turbo",
|
| 322 |
+
messages=[{
|
| 323 |
+
"role": "system",
|
| 324 |
+
"content": """You are an expert at converting natural language queries into precise object detection terms.
|
| 325 |
+
|
| 326 |
+
RULES:
|
| 327 |
+
1. Return ONLY 1-2 words maximum that describe the object to detect
|
| 328 |
+
2. Use the exact object name from the user's query
|
| 329 |
+
3. For people: use "person"
|
| 330 |
+
4. For vehicles: use "car", "truck", "bicycle"
|
| 331 |
+
5. Do NOT include counting words, articles, or explanations
|
| 332 |
+
6. Examples:
|
| 333 |
+
- "How many cacao fruits are there?" β "cacao fruit"
|
| 334 |
+
- "Count the corn in the field" β "corn"
|
| 335 |
+
- "Find all people" β "person"
|
| 336 |
+
- "How many cacao pods?" β "cacao pod"
|
| 337 |
+
- "Detect cars" β "car"
|
| 338 |
+
- "Count bananas" β "banana"
|
| 339 |
+
- "How many apples?" β "apple"
|
| 340 |
+
|
| 341 |
+
Return ONLY the object name, nothing else."""
|
| 342 |
+
}, {
|
| 343 |
+
"role": "user",
|
| 344 |
+
"content": query_text
|
| 345 |
+
}],
|
| 346 |
+
temperature=0.0, # Make it deterministic
|
| 347 |
+
max_tokens=5 # Force brevity
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
llm_result = response.choices[0].message.content.strip().lower()
|
| 351 |
+
# Extra safety: take only first 2 words
|
| 352 |
+
words = llm_result.split()[:2]
|
| 353 |
+
final_result = " ".join(words)
|
| 354 |
+
|
| 355 |
+
print(f"π€ OpenAI suggested prompt: '{final_result}'")
|
| 356 |
+
return final_result
|
| 357 |
+
|
| 358 |
+
except Exception as e:
|
| 359 |
+
print(f"OpenAI error: {e}, falling back to keyword extraction")
|
| 360 |
+
|
| 361 |
+
# Fallback to simple keyword extraction (no hardcoded fruits)
|
| 362 |
+
print("π€ Using keyword extraction (no OpenAI)")
|
| 363 |
+
query_lower = query_text.lower().replace("?", "").strip()
|
| 364 |
+
|
| 365 |
+
# Look for common patterns and extract object names
|
| 366 |
+
if "how many" in query_lower:
|
| 367 |
+
parts = query_lower.split("how many")
|
| 368 |
+
if len(parts) > 1:
|
| 369 |
+
remaining = parts[1].strip()
|
| 370 |
+
remaining = remaining.replace("are", "").replace("in", "").replace("the", "").replace("image", "").replace("there", "").strip()
|
| 371 |
+
# Take first meaningful word(s)
|
| 372 |
+
words = remaining.split()[:2]
|
| 373 |
+
search_terms = " ".join(words) if words else "object"
|
| 374 |
+
else:
|
| 375 |
+
search_terms = "object"
|
| 376 |
+
elif "count" in query_lower:
|
| 377 |
+
parts = query_lower.split("count")
|
| 378 |
+
if len(parts) > 1:
|
| 379 |
+
remaining = parts[1].strip()
|
| 380 |
+
remaining = remaining.replace("the", "").replace("in", "").replace("image", "").strip()
|
| 381 |
+
words = remaining.split()[:2]
|
| 382 |
+
search_terms = " ".join(words) if words else "object"
|
| 383 |
+
else:
|
| 384 |
+
search_terms = "object"
|
| 385 |
+
elif "find" in query_lower:
|
| 386 |
+
parts = query_lower.split("find")
|
| 387 |
+
if len(parts) > 1:
|
| 388 |
+
remaining = parts[1].strip()
|
| 389 |
+
remaining = remaining.replace("all", "").replace("the", "").replace("in", "").replace("image", "").strip()
|
| 390 |
+
words = remaining.split()[:2]
|
| 391 |
+
search_terms = " ".join(words) if words else "object"
|
| 392 |
+
else:
|
| 393 |
+
search_terms = "object"
|
| 394 |
+
else:
|
| 395 |
+
# Extract first 1-2 meaningful words from the query
|
| 396 |
+
words = query_lower.split()
|
| 397 |
+
meaningful_words = [w for w in words if w not in ["how", "many", "are", "in", "the", "image", "find", "count", "detect", "there", "this", "that", "a", "an"]]
|
| 398 |
+
search_terms = " ".join(meaningful_words[:2]) if meaningful_words else "object"
|
| 399 |
+
|
| 400 |
+
return search_terms
|
| 401 |
+
|
| 402 |
def is_count_query(text):
|
| 403 |
"""Check if the query is asking for counting."""
|
| 404 |
count_keywords = ["how many", "count", "number of", "total"]
|
|
|
|
| 410 |
return None, "β οΈ Please upload an image first!"
|
| 411 |
|
| 412 |
try:
|
| 413 |
+
# Use OpenAI or fallback to get optimized search terms
|
| 414 |
+
search_terms = get_optimized_prompt(query_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
|
| 416 |
print(f"Processing query: '{query_text}' -> searching for: '{search_terms}'")
|
| 417 |
|
| 418 |
# Run object detection
|
| 419 |
detections, processed_image = detect_objects_owlv2(search_terms, image, threshold)
|
| 420 |
|
| 421 |
+
print(f"Found {len(detections)} detections")
|
| 422 |
+
for i, det in enumerate(detections):
|
| 423 |
+
print(f"Detection {i+1}: {det['label']} (score: {det['score']:.3f})")
|
| 424 |
+
|
| 425 |
# Generate masks if requested
|
| 426 |
if use_sam and detections:
|
| 427 |
+
print("Generating SAM2 masks...")
|
| 428 |
detections = generate_masks_sam2(detections, processed_image)
|
| 429 |
|
| 430 |
# Create visualization using your proven functions
|
| 431 |
+
print("Creating visualization...")
|
| 432 |
+
if use_sam and detections and 'mask' in detections[0]:
|
| 433 |
result_image = visualize_detections_with_masks(
|
| 434 |
processed_image,
|
| 435 |
detections,
|
| 436 |
show_labels=True,
|
| 437 |
show_boxes=True
|
| 438 |
)
|
| 439 |
+
print("Created visualization with masks")
|
| 440 |
else:
|
| 441 |
result_image = visualize_detections(
|
| 442 |
processed_image,
|
| 443 |
detections,
|
| 444 |
show_labels=True
|
| 445 |
)
|
| 446 |
+
print("Created visualization with bounding boxes only")
|
| 447 |
+
|
| 448 |
+
# Make sure we have a valid result image
|
| 449 |
+
if result_image is None:
|
| 450 |
+
print("Warning: result_image is None, returning original image")
|
| 451 |
+
result_image = processed_image
|
| 452 |
|
| 453 |
# Generate summary
|
| 454 |
count = len(detections)
|
| 455 |
|
| 456 |
summary_parts = []
|
| 457 |
+
summary_parts.append(f"π£οΈ **Original Query**: '{query_text}'")
|
| 458 |
+
summary_parts.append(f"π€ **AI-Optimized Search**: '{search_terms}'")
|
| 459 |
summary_parts.append(f"βοΈ **Threshold**: {threshold}")
|
| 460 |
+
summary_parts.append(f"π **SAM2 Segmentation**: {'Enabled' if use_sam else 'Disabled'}")
|
| 461 |
|
| 462 |
if count > 0:
|
| 463 |
if is_count_query(query_text):
|